Cặp điểm nào sau đây là các tiêu điểm của elip (E): \(\frac{{{x^2}}}{5} + \frac{{{y^2}}}{4} = 1\)?
Hướng dẫn giải
Đáp án đúng là: A
Phương trình chính tắc của (E) có dạng \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\), với \(\left\{ \begin{array}{l}{a^2} = 5\\{b^2} = 4\end{array} \right.\)
Suy ra c2 = a2 – b2 = 5 – 4 = 1.
Khi đó c = 1.
Vậy (E) có hai tiêu điểm là F1(–1; 0), F2(1; 0).
Do đó ta chọn phương án A.
Phương trình chính tắc của hypebol (H) có một tiêu điểm F(–3; 0) và đi qua điểm M(2; 0) là:
Điểm nào sau đây là các tiêu điểm của hypebol (H): \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{{25}} = 1\)?
Phương trình chính tắc của parabol (P) có đường chuẩn ∆: 2x + 6 = 0 là:
Cho hai phương trình \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1\) (1) và \(\frac{{{x^2}}}{5} + \frac{{{y^2}}}{9} = 1\) (2). Phương trình nào là phương trình chính tắc của elip có 2a = 6, 2c = 4?