Đáp án đúng là: D
Đường tròn đường kính AB có tâm là trung điểm I của AB và có bán kính bằng nửa độ dài đoạn AB.
Ta có \(\overrightarrow {AB} = \left( {4;\,\, - 4} \right)\), suy ra \(AB = \sqrt {{4^2} + {{\left( { - 4} \right)}^2}} = 4\sqrt 2 \).
Suy ra bán kính đường tròn là \(R = \frac{{AB}}{2} = 2\sqrt 2 \).
Tọa độ tâm là \(\left\{ \begin{array}{l}{x_I} = \frac{{1 + 5}}{2} = 3\\{y_I} = \frac{{3 + \left( { - 1} \right)}}{2} = 1\end{array} \right.\). Suy ra I(3; 1).
Phương trình đường tròn cần lập là: (x – 3)2 + (y – 1)2 = 8.
Viết phương trình tổng quát của đường thẳng
a) đi qua M(– 1; – 4) và song song với đường thẳng 3x + 5y – 2 = 0;
b) đi qua N(1; 1) và vuông góc với đường thẳng 2x + 3y + 7 = 0.
Trong mặt phẳng tọa độ, xét hai đường thẳng
∆1: a1x + b1y + c1 = 0; ∆2: a2x + b2y + c2 = 0.
và hệ phương trình: \[\left\{ \begin{array}{l}{a_1}x + {b_1}y + {c_1} = 0\\{a_2}x + {b_2}y + {c_2} = 0\end{array} \right.\] (*).
Khi đó, ∆1 trùng với ∆2 khi và chỉ khi
Giải các phương trình sau:
a) \(\sqrt {3{x^2} - 4x + 5} = \sqrt {2{x^2} - 3x + 11} \); b) \(\sqrt {2{x^2} - 13x + 21} = x - 3\).
Cho hàm số bậc hai có bảng biến thiên như sau:
Công thức hàm số bậc hai trên là
Cho hàm số y = f(x) có đồ thị như hình dưới đây.
Trong các phát biểu sau, phát biểu nào sai?