IMG-LOGO

Câu hỏi:

11/07/2024 144

Một nhà khoa học tự chế tên lửa và phóng tên lửa từ mặt đất với vận tốc ban đầu là 20 m/s. Giả sử bỏ qua sức cản của gió, tên lửa chỉ chịu tác động của trọng lực. Hỏi sau 2s thì tên lửa đạt đến tốc độ là bao nhiêu?

A. 0,45 m/s.

B. 0,4 m/s.

Đáp án chính xác

C. 0,6 m/s.

D. 0,8 m/s.

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Xem như tại thời điểm \[{t_0} = 0\] thì nhà khoa học phóng tên lửa với vận tốc đầu 20 m/s. Ta có \[s\left( 0 \right) = 0\] và \[v\left( 0 \right) = 20\].

Vì tên lửa chuyển động thẳng đứng nên gia tốc trọng trường tại mọi thời điểm t là \[{s^n}\left( t \right) = - 9,8\;m/{s^2}\].

Nguyên hàm của gia tốc là vận tốc nên ta có vận tốc của tên lửa tại thời điểm t là \[v\left( t \right) = \int { - 9,8dt} = - 9,8t + {C_1}\].

Do \[v\left( 0 \right) = 20\] nên \[ - 9,8t + {C_1} = 20 \Leftrightarrow {C_1} = 20 \Rightarrow v\left( t \right) = - 9,8t + 20\].

Vậy vận tốc của tên lửa sau 2s là \[v\left( 2 \right) = - 9,8.2 + 20 = 0,4\left( {m/s} \right)\].

Chọn B.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Gọi \[F\left( x \right)\] là nguyên hàm của hàm số \[f\left( x \right) = \frac{{{{\cos }^5}x}}{{1 - \sin x}}\], với \[x \ne \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\] và thỏa mãn \[F\left( \pi \right) = \frac{3}{4}\]. Giá trị của \[F\left( { - \frac{\pi }{2}} \right)\] là:

Xem đáp án » 05/01/2023 171

Câu 2:

Kết quả nguyên hàm \[I = \int {x.\ln xdx} \] là:

Xem đáp án » 05/01/2023 170

Câu 3:

Nguyên hàm của hàm số \[f\left( x \right) = \frac{{5x - 13}}{{{x^2} - 5x + 6}}\] là:

Xem đáp án » 05/01/2023 166

Câu 4:

Họ nguyên hàm của hàm số \[f\left( x \right) = 3{x^2} + {3^x}\] là

Xem đáp án » 05/01/2023 159

Câu 5:

Nguyên hàm của hàm số \[f\left( x \right) = 5{x^4} + \frac{2}{{{x^2}}} - \sqrt[3]{x}\] là:

Xem đáp án » 05/01/2023 152

Câu 6:

Nguyên hàm của hàm số \[f\left( x \right) = \frac{{{2^x} - 1}}{{{e^x}}}\] là:

Xem đáp án » 05/01/2023 152

Câu 7:

Nguyên hàm của hàm số \[\int {{{\tan }^3}xdx} \] là:

Xem đáp án » 05/01/2023 150

Câu 8:

Nguyên hàm \[S = \int {{x^3}\sqrt {{x^2} + 9} dx} \] là:

Xem đáp án » 05/01/2023 149

Câu 9:

Cho hàm số \[f\left( x \right)\] xác định trên \[\mathbb{R}\backslash \left\{ {\frac{1}{2}} \right\}\] thỏa mãn \[f'\left( x \right) = \frac{2}{{2x - 1}};\;f\left( 0 \right) = 1\] và \[f\left( 1 \right) = 2\]. Giá trị của biểu thức \[P = f\left( { - 1} \right) + f\left( 3 \right)\] là:

Xem đáp án » 05/01/2023 148

Câu 10:

Cho hàm số \[f\left( x \right)\] xác định trên \[\mathbb{R}\backslash \left\{ { - 1;1} \right\}\], thỏa mãn \[f'\left( x \right) = \frac{2}{{{x^2} - 1}};\;f\left( { - 3} \right) + f\left( 3 \right) = 2\ln 2\] và \[f\left( { - \frac{1}{2}} \right) + f\left( {\frac{1}{2}} \right) = 0\]. Giá trị của biểu thức \[P = f\left( { - 2} \right) + f\left( 0 \right) + f\left( 4 \right)\] là:

Xem đáp án » 05/01/2023 148

Câu 11:

Kết quả nguyên hàm \[\int {\ln \left( {x + 2019} \right)dx} \] là:

Xem đáp án » 05/01/2023 146

Câu 12:

Một vận động viên điền kinh chạy với gia tốc \[a\left( t \right) = - \frac{1}{{24}}{t^3} + \frac{5}{{16}}{t^2}\left( {m/{s^2}} \right)\], trong đó t là khoảng thời gian tính từ lúc xuất phát. Hỏi vào thời điểm 5 (s) sau khi xuất phát thì vận tốc của vận động viên là bao nhiêu?

Xem đáp án » 05/01/2023 144

Câu 13:

Nguyên hàm của hàm số \[\int {\left( {2\cos x - 3\cos 5x} \right)dx} \] là:

Xem đáp án » 05/01/2023 142

Câu 14:

Một ô tô đang chạy với vận tốc 10 (m/s) thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc \[v\left( t \right) = 10 - 2t\left( {m/s} \right)\], trong đó t là khoảng thời gian tính bằng giây kể từ lúc đạp phanh. Tính quãng đường ô tô di chuyển được trong 8 giây cuối cùng.

Xem đáp án » 05/01/2023 142

Câu 15:

Họ nguyên hàm của hàm số \[f\left( x \right) = {e^x} + x\] là:

Xem đáp án » 05/01/2023 141

Câu hỏi mới nhất

Xem thêm »
Xem thêm »