Hướng dẫn giải
Đặt \[\left\{ \begin{array}{l}u = \ln \left( {x + 2019} \right)\\dv = dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \frac{1}{{x + 2019}}dx\\v = x + 2019\end{array} \right.\]
(ở đây từ \[dv = dx \Rightarrow v = x + C\], ta có thể chọn \[C = 2019\] để việc tính toán đơn giản hơn)
Khi đó
\[\int {\ln \left( {x + 2019} \right)dx} = \left( {x + 2019} \right)\ln \left( {x + 2019} \right) - \int {dx} \]
Vậy \[\int {\ln \left( {x + 2019} \right)dx} = \left( {x + 2019} \right)\ln \left( {x + 2019} \right) - x + C\]
Chọn B.
Gọi \[F\left( x \right)\] là nguyên hàm của hàm số \[f\left( x \right) = \frac{{{{\cos }^5}x}}{{1 - \sin x}}\], với \[x \ne \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\] và thỏa mãn \[F\left( \pi \right) = \frac{3}{4}\]. Giá trị của \[F\left( { - \frac{\pi }{2}} \right)\] là: