Hướng dẫn giải
Từ \(f'\left( x \right) = x{\left[ {f\left( x \right)} \right]^2}\) (1), suy ra \(f'\left( x \right) \ge 0\) với mọi \(x \in \left[ {1;2} \right]\).
Suy ra \(f\left( x \right)\) là hàm không giảm trên đoạn \(\left[ {1;2} \right]\) nên \(f\left( x \right) \le f\left( 2 \right) < 0\), \(\forall x \in \left[ {1;2} \right]\).
Chia 2 vế hệ thức (1) cho \({\left[ {f\left( x \right)} \right]^2}\) ta được \(\frac{{f'\left( x \right)}}{{{{\left[ {f\left( x \right)} \right]}^2}}} = x,\forall x \in \left[ {1;2} \right].\) (2)
Lấy tích phân 2 vế trên đoạn \(\left[ {1;2} \right]\) hệ thức (2), ta được
\(\int\limits_1^2 {\frac{{f'\left( x \right)}}{{{{\left[ {f\left( x \right)} \right]}^2}}}dx = \int\limits_1^2 {xdx \Leftrightarrow } \left[ {\frac{{ - 1}}{{f\left( x \right)}}} \right]\left| {_{\scriptstyle\atop\scriptstyle1}^{\scriptstyle2\atop\scriptstyle}} \right. = \left( {\frac{{{x^2}}}{2}} \right)\left| {_{\scriptstyle\atop\scriptstyle1}^{\scriptstyle2\atop\scriptstyle}} \right. \Leftrightarrow \frac{1}{{f\left( 1 \right)}} - \frac{1}{{f\left( 2 \right)}} = \frac{3}{2}.} \)
Do \(f\left( 2 \right) = - \frac{1}{3}\) nên suy ra \(f\left( 1 \right) = - \frac{2}{3}.\)
Chọn C.
Cho \(\int\limits_0^{\frac{\pi }{4}} {\frac{{\ln \left( {\sin x + 2\cos x} \right)}}{{{{\cos }^2}x}}} dx = a\ln 3 + b\ln 2 + c\pi \) với \(a,b,c\) là các số hữu tỉ.
Giá trị của abc bằng
Cho \(y = f\left( x \right)\) là hàm số chẵn, liên tục trên đoạn \(\left[ { - 6;6} \right]\).
Biết rằng \(\int\limits_{ - 1}^2 {f\left( x \right)dx = 8} \) và \(\int\limits_1^3 {f\left( { - 2x} \right)dx = 3.} \)
Tính \(\int\limits_{ - 1}^6 {f\left( x \right)dx} .\)
Biết \(I = \int_0^{\ln 2} {\frac{{dx}}{{{e^x} + 3{e^{ - x}} + 4}}} = \frac{1}{c}\left( {\ln a - \ln b + \ln c} \right)\), với \(a,b,c\) là các số nguyên tố.
Giá trị của \(P = 2a - b + c\) là
Biết \(\int\limits_0^{\frac{\pi }{2}} {\frac{{\cos x}}{{{{\sin }^2}x + 3\sin x + 2}}dx} = a\ln 2 + b\ln 3,\) với \(a,b\) là các số nguyên.
Giá trị của \(P = 2a + b\) là