Hướng dẫn giải
Đặt \(u = \sqrt {{x^2} + 4} \Rightarrow {x^2} = {u^2} - 4\) nên \(xdx = udu\)
Đổi cận
x |
\(\sqrt 5 \) |
\(2\sqrt 3 \) |
u |
3 |
4 |
Khi đó \(I = \int\limits_{\sqrt 5 }^{2\sqrt 3 } {\frac{1}{{{x^2}\sqrt {{x^2} + 4} }}.xdx} \) nên \(I = \int\limits_3^4 {\frac{1}{{\left( {{u^2} - 4} \right)u}}.udu} = \int\limits_3^4 {\frac{1}{{{u^2} - 4}}du.} \)
Suy ra \(I = \frac{1}{4}\int\limits_3^4 {\left( {\frac{1}{{u - 2}} - \frac{1}{{u + 2}}} \right)du = \frac{1}{4}\left( {\ln \left| {u - 2} \right| - \ln \left| {u + 2} \right|} \right)\left| {_{\scriptstyle\atop\scriptstyle3}^{\scriptstyle4\atop\scriptstyle}} \right. = \frac{1}{4}\ln \frac{5}{3}.} \)
Chọn B.
Cho \(\int\limits_0^{\frac{\pi }{4}} {\frac{{\ln \left( {\sin x + 2\cos x} \right)}}{{{{\cos }^2}x}}} dx = a\ln 3 + b\ln 2 + c\pi \) với \(a,b,c\) là các số hữu tỉ.
Giá trị của abc bằng
Cho \(y = f\left( x \right)\) là hàm số chẵn, liên tục trên đoạn \(\left[ { - 6;6} \right]\).
Biết rằng \(\int\limits_{ - 1}^2 {f\left( x \right)dx = 8} \) và \(\int\limits_1^3 {f\left( { - 2x} \right)dx = 3.} \)
Tính \(\int\limits_{ - 1}^6 {f\left( x \right)dx} .\)
Biết \(\int\limits_0^{\frac{\pi }{2}} {\frac{{\cos x}}{{{{\sin }^2}x + 3\sin x + 2}}dx} = a\ln 2 + b\ln 3,\) với \(a,b\) là các số nguyên.
Giá trị của \(P = 2a + b\) là
Biết \(I = \int_0^{\ln 2} {\frac{{dx}}{{{e^x} + 3{e^{ - x}} + 4}}} = \frac{1}{c}\left( {\ln a - \ln b + \ln c} \right)\), với \(a,b,c\) là các số nguyên tố.
Giá trị của \(P = 2a - b + c\) là