Cho \(\int\limits_0^{\frac{\pi }{4}} {\frac{{\ln \left( {\sin x + 2\cos x} \right)}}{{{{\cos }^2}x}}} dx = a\ln 3 + b\ln 2 + c\pi \) với \(a,b,c\) là các số hữu tỉ.
Giá trị của abc bằng
Hướng dẫn giải
Đặt \(\left\{ \begin{array}{l}u = \ln \left( {\sin x + 2\cos x} \right)\\dv = \frac{{dx}}{{{{\cos }^2}x}}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \frac{{\cos x - 2\sin x}}{{\sin x + 2\cos x}}dx\\v = \tan x + 2\end{array} \right..\)
Khi đó
\(\int\limits_0^{\frac{\pi }{4}} {\frac{{\ln \left( {\sin x + 2\cos x} \right)}}{{{{\cos }^2}x}}} dx = \left( {\tan x + 2} \right)\ln \left( {\sin x + 2\cos x} \right)\left| {_{\scriptstyle\atop\scriptstyle0}^{\frac{\pi }{4}}} \right. - \int\limits_0^{\frac{\pi }{4}} {\frac{{\cos x - 2\sin x}}{{\cos x}}dx} \)
\( = 3\ln \left( {\frac{{3\sqrt 2 }}{2}} \right) - 2\ln 2 - \int\limits_0^{\frac{\pi }{4}} {\left( {1 - 2\tan x} \right)} dx\)
\( = 3\ln 3 - \frac{7}{2}\ln 2 - \left( {x + 2\ln \left| {\cos x} \right|} \right)\left| {_{\scriptstyle\atop\scriptstyle0}^{\frac{\pi }{4}}} \right.\)
\( = 3\ln 3 - \frac{7}{2}\ln 2 - \frac{\pi }{4} - 2\ln \frac{{\sqrt 2 }}{2} = 3\ln 3 - \frac{5}{2}\ln 2 - \frac{\pi }{4}.\)
Suy ra \(a = 3,b = - \frac{5}{2},c = - \frac{1}{4}.\) Vậy \(abc = 18.\)
Chọn A.
Cho \(y = f\left( x \right)\) là hàm số chẵn, liên tục trên đoạn \(\left[ { - 6;6} \right]\).
Biết rằng \(\int\limits_{ - 1}^2 {f\left( x \right)dx = 8} \) và \(\int\limits_1^3 {f\left( { - 2x} \right)dx = 3.} \)
Tính \(\int\limits_{ - 1}^6 {f\left( x \right)dx} .\)
Biết \(\int\limits_0^{\frac{\pi }{2}} {\frac{{\cos x}}{{{{\sin }^2}x + 3\sin x + 2}}dx} = a\ln 2 + b\ln 3,\) với \(a,b\) là các số nguyên.
Giá trị của \(P = 2a + b\) là
Biết \(I = \int_0^{\ln 2} {\frac{{dx}}{{{e^x} + 3{e^{ - x}} + 4}}} = \frac{1}{c}\left( {\ln a - \ln b + \ln c} \right)\), với \(a,b,c\) là các số nguyên tố.
Giá trị của \(P = 2a - b + c\) là