Hướng dẫn giải
Ta có
\[I = \int\limits_1^2 {{{\left( {x + 1} \right)}^2}{e^{x - \frac{1}{x}}}dx = \int\limits_1^2 {\left( {{x^2} + 2x + 1} \right){e^{x - \frac{1}{x}}}} dx = } \int\limits_1^2 {\left( {{x^2} + 1} \right)} {e^{x - \frac{1}{x}}}dx + \int\limits_1^2 {2x{e^{x - \frac{1}{x}}}} dx.\]
Xét \({I_1} = \int\limits_1^2 {\left( {{x^2} + 1} \right)} {e^{x - \frac{1}{x}}}dx = \int\limits_1^2 {{x^2}.{e^{x - \frac{1}{x}}}} .\frac{{{x^2} + 1}}{{{x^2}}}dx = \int\limits_1^2 {{x^2}.{e^{x - \frac{1}{x}}}} d\left( {x - \frac{1}{x}} \right) = \int\limits_1^2 {{x^2}d\left( {{e^{x - \frac{1}{x}}}} \right)} \)
\( = {x^2}{e^{x - \frac{1}{x}}}\left| {_{\scriptstyle\atop\scriptstyle1}^{\scriptstyle2\atop\scriptstyle}} \right. - \int\limits_1^2 {{e^{x - \frac{1}{x}}}} d\left( {{x^2}} \right) = {x^2}{e^{x - \frac{1}{x}}}\left| {_{\scriptstyle\atop\scriptstyle1}^{\scriptstyle2\atop\scriptstyle}} \right. - \int\limits_1^2 {2x{e^{x - \frac{1}{x}}}} dx\)
\( \Rightarrow {I_1} + \int\limits_1^2 {2x{e^{x - \frac{1}{x}}}} dx = {x^2}{e^{x - \frac{1}{x}}}\left| {_{\scriptstyle\atop\scriptstyle1}^{\scriptstyle2\atop\scriptstyle}} \right. \Rightarrow I = {x^2}{e^{x - \frac{1}{x}}}\left| {_{\scriptstyle\atop\scriptstyle1}^{\scriptstyle2\atop\scriptstyle}} \right. = 4{e^{\frac{3}{2}}} - 1\)
\( \Rightarrow m = 4,n = 1,p = 3,q = 2.\)
Khi đó \(T = m + n + p + q = 4 + 1 + 3 + 2 = 10.\)
Chọn B.
Cho \(\int\limits_0^{\frac{\pi }{4}} {\frac{{\ln \left( {\sin x + 2\cos x} \right)}}{{{{\cos }^2}x}}} dx = a\ln 3 + b\ln 2 + c\pi \) với \(a,b,c\) là các số hữu tỉ.
Giá trị của abc bằng
Cho \(y = f\left( x \right)\) là hàm số chẵn, liên tục trên đoạn \(\left[ { - 6;6} \right]\).
Biết rằng \(\int\limits_{ - 1}^2 {f\left( x \right)dx = 8} \) và \(\int\limits_1^3 {f\left( { - 2x} \right)dx = 3.} \)
Tính \(\int\limits_{ - 1}^6 {f\left( x \right)dx} .\)
Biết \(\int\limits_0^{\frac{\pi }{2}} {\frac{{\cos x}}{{{{\sin }^2}x + 3\sin x + 2}}dx} = a\ln 2 + b\ln 3,\) với \(a,b\) là các số nguyên.
Giá trị của \(P = 2a + b\) là
Biết \(I = \int_0^{\ln 2} {\frac{{dx}}{{{e^x} + 3{e^{ - x}} + 4}}} = \frac{1}{c}\left( {\ln a - \ln b + \ln c} \right)\), với \(a,b,c\) là các số nguyên tố.
Giá trị của \(P = 2a - b + c\) là
Cho \(F\left( x \right)\) là nguyên hàm của hàm số \(f\left( x \right) = \frac{{\ln x}}{x}\). Giá trị của \(F\left( e \right) - F\left( 1 \right)\) bằng