Cho tứ diện ABCD có các mặt ABC và BCD là các tam giác đều cạnh bằng 2, hai mặt phẳng (ABD) và (ACD) vuông góc với nhau. Bán kính mặt cầu ngoại tiếp tứ diện ABCD bằng
Một cốc nước hình trụ có đường kính đáy bằng 6cm, chiều cao bằng 15cm. Giả sử mức nước trong cốc cao 7cm so với đáy bên trong cốc. Người ta thả viên bi hình cầu có bán kính bằng 2cm vào cốc nước. Hỏi mức nước dâng lên trong cốc là bao nhiêu cm?
Người ta thả một viên bi có dạng hình cầu với bán kính bằng 3cm vào một cái ly dạng hình trụ đang chứa nước. Người ta thấy viên bi chìm xuống đáy ly và chiều cao của mực nước dâng lên thêm 1cm. Biết rằng chiều cao của mực nước ban đầu trong ly bằng 7,5cm. Tính thể tích V của khối nước ban đầu trong ly (kết quả lấy xấp xỉ).
Cho lăng trụ đứng có chiều cao bằng h không đổi, một đáy là tứ giác ABCD với A, B, C, D di động. Gọi I là giao của hai đường chéo AC và BD của tứ giác đó. Cho biết IA.IC = IB.ID = h2 . Giá trị nhỏ nhất của bán kính mặt cầu ngoại tiếp hình lăng trụ đã cho là
Cho điểm A nằm ngoài mặt cầu S(O;R). Biết rằng qua A có vô số tiếp tuyến với mặt cầu. Tập hợp các tiếp điểm là một đường tròn nằm trên đường tròn có bán kính bằng Tính độ dài đoạn thẳng OA theo R.
Cho tam giác ABC đều cạnh a, đường thẳng d đi qua A và vuông góc với mặt phẳng (ABC). Gọi S là điểm thay đổi trên đường thẳng d, H là trực tâm tâm giác SBC. Biết rằng khi S thay đổi trên đường thẳng d thì điểm H nằm trên đường (C). Trong số các mặt cầu chứa đường (C), bán kính mặt cầu nhỏ nhất là
Cho hình chóp đều S.ABC có cạnh đáy bằng a, cạnh bên hợp với mặt đáy một góc 60°. Gọi (S) là mặt cầu ngoại tiếp hình chóp S.ABC. Thể tích của khối cầu tạo nên bởi mặt cầu (S) bằng
Cho hình chóp S.ABC có đáy là tam giác vuông tại B, AB = 8, BC = 6. Biết SA = 6 và SA vuông góc với mp(ABC). Tính thể tích khối cầu có tâm thuộc phần không gian bên trong của hình chóp và tiếp xúc với tất cả các mặt của hình chóp S.ABC.