Đáp án B
Phương pháp:
Sử dụng công thức tọa độ của phép vị tự \[{V_{\left( {O;k} \right)}}\left( A \right) = A' \Leftrightarrow \left\{ \begin{array}{l}{x_{A'}} = k{x_A}\\{x_{B'}} = k{x_B}\end{array} \right.\]
Đường tròn tâm \[I\left( {a;\,\,b} \right)\] bán kính R có phương trình \[{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\]
Cách giải:
Đường tròn (C) có tâm \[I\left( {8;\,\,4} \right)\]và bán kính \[R = 2\]
Gọi \[I'\left( {x;\,\,y} \right)\] là ảnh của \[I\left( {8;\,\,4} \right)\] qua \[{V_{\left( {O;3} \right)}}\]
Ta có \[\left\{ \begin{array}{l}x = 3.8 = 24\\y = 3.4 = 12\end{array} \right. \Rightarrow I'\left( {24;\,\,12} \right)\].
Ảnh của đường tròn (C) qua phép vị tự tâm O tỉ số \[k = 3\]là đường tròn \[\left( {C'} \right)\] có tâm \[I'\left( {24;\,\,12} \right)\] và bán kính \[R' = k.R = 3.2 = 6\].
Phương trình đường tròn \[\left( {C'} \right):{\left( {x - 24} \right)^2} + {\left( {y - 12} \right)^2} = 36\]
Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi. Gọi M, K lần lượt là trung điểm của SA, BC. Điểm N thuộc cạnh SC sao cho \[SN = 2NC\].
a) Tìm giao tuyến của mặt phẳng (MNK) mặt phẳng (SAB) và tìm giao điểm H của AB với mặt phẳng (MNK).
b) Xác định thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (MNK). Tính tỉ số \[\frac{{HA}}{{HB}}\]?
a) Tìm số hạng không chứa x trong khai triển \[{\left( {2{x^2} + \frac{1}{{{x^3}}}} \right)^5}\]
b) Gọi A là tập hợp tất cả các số tự nhiên gồm 4 chữ số phân biệt được chọn từ các chữ số \[0;1;2;3;4;5;6;7\]. Chọn ngẫu nhiên một số từ tập A. Tính xác suất để số chọn được là số chia hết cho 5.