Đáp án D
Phương pháp:
Phép tịnh tiến biến đường thẳng thành đường thẳng song song hoặc trùng với nó.
- Viết dạng phương trình của đường thẳng \[\Delta '\]
- Lấy một điểm \[A \in \Delta \], tìm ảnh \[A'\] của A qua phép tịnh tiến
- Cho \[A' \in \Delta '\] suy ra phương trình \[\Delta '\]
Cách giải:
Gọi phương trình \[\Delta '||\Delta \] có dạng \[\Delta ':x + 2y + c = 0\]
Lấy \[A\left( {1;\,\,0} \right) \in \Delta \], khi đó \[{T_{\overrightarrow v }}\left( A \right) = A' \Leftrightarrow \left\{ \begin{array}{l}{x_{A'}} = 1 + 1 = 2\\{y_{A'}} = 0 - 1 = - 1\end{array} \right. \Rightarrow A'\left( {2;\,\, - 1} \right)\]
\[A' \in \Delta ' \Leftrightarrow 2 + 2.\left( { - 1} \right) + c = 0 \Leftrightarrow c = 0\]
Vậy phương trình \[\Delta ':x + 2y = 0\]
Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi. Gọi M, K lần lượt là trung điểm của SA, BC. Điểm N thuộc cạnh SC sao cho \[SN = 2NC\].
a) Tìm giao tuyến của mặt phẳng (MNK) mặt phẳng (SAB) và tìm giao điểm H của AB với mặt phẳng (MNK).
b) Xác định thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (MNK). Tính tỉ số \[\frac{{HA}}{{HB}}\]?
a) Tìm số hạng không chứa x trong khai triển \[{\left( {2{x^2} + \frac{1}{{{x^3}}}} \right)^5}\]
b) Gọi A là tập hợp tất cả các số tự nhiên gồm 4 chữ số phân biệt được chọn từ các chữ số \[0;1;2;3;4;5;6;7\]. Chọn ngẫu nhiên một số từ tập A. Tính xác suất để số chọn được là số chia hết cho 5.