Đáp án A
Phương pháp:
- Biến đổi phương trình về dạng phương trình đối xứng đối với sin và cos.
- Sử dụng phương pháp đặt ẩn phụ \[t = \sin x + \cos x\] để giải phương trình này.
Cách giải:
Ta có: \[\sin x + \cos x = 1 - \frac{1}{2}\sin 2x \Leftrightarrow \sin x + \cos x = 1 - \sin x\cos x\]
Đặt \[\sin x + \cos x = t\,\,\left( { - \sqrt 2 \le t \le \sqrt 2 } \right)\]\[ \Rightarrow \sin x\cos x = \frac{{{t^2} - 1}}{2}\].
Khi đó phương trình trở thành:
\[t = 1 - \frac{{{t^2} - 1}}{2} = 0 \Leftrightarrow 2t + {t^2} - 1 - 2 = 0 \Leftrightarrow {t^2} + 2t - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1 & \left( {tm} \right)\\t = - 3 & \left( {ktm} \right)\end{array} \right.\]
Suy ra \[\sin x + \cos x = 1 \Leftrightarrow \sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right) = 1 \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = \frac{1}{{\sqrt 2 }}\]
\[ \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = \sin \frac{\pi }{4} \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{4} = \frac{\pi }{4} + k2\pi \\x + \frac{\pi }{4} = \frac{{3\pi }}{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k2\pi \\x = \frac{\pi }{2} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\]
Do x là nghiệm âm lớn nhất nên:
+ TH1: \[k2\pi < 0 \Leftrightarrow k < 0\mathop \Rightarrow \limits^{k \in \mathbb{Z}} k = - 1 \Rightarrow x = - 2\pi \]
+ TH2: \[\frac{\pi }{2} + k2\pi < 0 \Leftrightarrow k < - \frac{1}{4}\mathop \Rightarrow \limits^{k \in \mathbb{Z}} k = - 1 \Rightarrow x = - \frac{{3\pi }}{2}\]
Trong hai nghiệm \[ - 2\pi \] và \[ - \frac{{3\pi }}{2}\] thì nghiệm âm lớn nhất là \[ - \frac{{3\pi }}{2}\].
Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi. Gọi M, K lần lượt là trung điểm của SA, BC. Điểm N thuộc cạnh SC sao cho \[SN = 2NC\].
a) Tìm giao tuyến của mặt phẳng (MNK) mặt phẳng (SAB) và tìm giao điểm H của AB với mặt phẳng (MNK).
b) Xác định thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (MNK). Tính tỉ số \[\frac{{HA}}{{HB}}\]?
a) Tìm số hạng không chứa x trong khai triển \[{\left( {2{x^2} + \frac{1}{{{x^3}}}} \right)^5}\]
b) Gọi A là tập hợp tất cả các số tự nhiên gồm 4 chữ số phân biệt được chọn từ các chữ số \[0;1;2;3;4;5;6;7\]. Chọn ngẫu nhiên một số từ tập A. Tính xác suất để số chọn được là số chia hết cho 5.