Đáp án B
Phương pháp:
Sử dụng công thức \[{\cos ^2}x = \frac{{1 + \cos 2x}}{2}\] và \[\cos \left( {a + b} \right) = \cos a.\cos b - \sin a\sin b\]
Sử dụng \[ - 1 \le \cos \le 1\]
Cách giải:
Ta có \[y = 2{\cos ^2}x + \sin 2x = 2.\frac{{1 + \cos 2x}}{2} + \sin 2x = 1 + \cos 2x + \sin 2x\]
\[ \Rightarrow \frac{y}{{\sqrt 2 }} = \frac{1}{{\sqrt 2 }} + \frac{1}{{\sqrt 2 }}\cos 2x + \frac{1}{{\sqrt 2 }}\sin 2x = \frac{1}{{\sqrt 2 }} + \cos 2x\cos \frac{\pi }{4} + \sin 2x.\sin \frac{\pi }{4} = \frac{1}{{\sqrt 2 }} + \cos \left( {2x - \frac{\pi }{4}} \right)\]
Ta có \[\cos \left( {2x - \frac{\pi }{4}} \right) \ge - 1 \Leftrightarrow \frac{1}{{\sqrt 2 }} + \cos \left( {2x - \frac{\pi }{4}} \right) \ge - 1 + \frac{1}{{\sqrt 2 }}\]
Hay \[\frac{y}{{\sqrt 2 }} \ge - 1 + \frac{1}{{\sqrt 2 }} \Leftrightarrow y \ge 1 - \sqrt 2 \]
Dấu “=” xảy ra khi \[\cos \left( {2x - \frac{\pi }{4}} \right) = - 1 \Leftrightarrow 2x - \frac{\pi }{4} = - \pi + k2\pi \Leftrightarrow x = \frac{{ - 3\pi }}{8} + k\pi \left( {k \in \mathbb{Z}} \right)\]
Vậy giá trị nhỏ nhất của y là \[1 - \sqrt 2 \].
Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi. Gọi M, K lần lượt là trung điểm của SA, BC. Điểm N thuộc cạnh SC sao cho \[SN = 2NC\].
a) Tìm giao tuyến của mặt phẳng (MNK) mặt phẳng (SAB) và tìm giao điểm H của AB với mặt phẳng (MNK).
b) Xác định thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (MNK). Tính tỉ số \[\frac{{HA}}{{HB}}\]?
a) Tìm số hạng không chứa x trong khai triển \[{\left( {2{x^2} + \frac{1}{{{x^3}}}} \right)^5}\]
b) Gọi A là tập hợp tất cả các số tự nhiên gồm 4 chữ số phân biệt được chọn từ các chữ số \[0;1;2;3;4;5;6;7\]. Chọn ngẫu nhiên một số từ tập A. Tính xác suất để số chọn được là số chia hết cho 5.