Đáp án E
Phương pháp:
Hàm số \[y = f\left( x \right)\] được gọi là chẵn trên D nếu với \[x \in D\] thì \[ - x \in D\] và \[f\left( { - x} \right) = f\left( x \right)\]
Cách giải:
Đáp án A: TXĐ: \[D = \mathbb{R}\]
Có \[f\left( { - x} \right) = \sin \left( { - 2x} \right) + 1 = - \sin 2x + 1 \ne f\left( x \right)\] nên hàm số này không chẵn không lẻ
Đáp án B: TXĐ: \[D = \mathbb{R}\]
Có \[f\left( { - x} \right) = \sin \left( { - x} \right).\cos \left( { - 2x} \right) = - \sin x.\cos 2x = - f\left( x \right)\] nên hàm số này lẻ
Đáp án C: TXĐ: \[D = \mathbb{R}\]
Có \[f\left( { - x} \right) = \sin \left( { - x} \right).\sin \left( { - 3x} \right) = \left( { - \sin x} \right).\left( { - \sin 3x} \right) = \sin x.\sin 3x = f\left( x \right)\] nên hàm số này chẵn
Đáp án D: TXĐ: \[D = \mathbb{R}\]
Có \[f\left( { - x} \right) = \sin \left( { - 2x} \right) + \sin \left( { - x} \right) = - \sin 2x - \sin x = - \left( {\sin 2x + \sin x} \right) = - f\left( x \right)\] nên hàm số này lẻ
Vậy có hai đáp án đúng là A và C
Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi. Gọi M, K lần lượt là trung điểm của SA, BC. Điểm N thuộc cạnh SC sao cho \[SN = 2NC\].
a) Tìm giao tuyến của mặt phẳng (MNK) mặt phẳng (SAB) và tìm giao điểm H của AB với mặt phẳng (MNK).
b) Xác định thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (MNK). Tính tỉ số \[\frac{{HA}}{{HB}}\]?
a) Tìm số hạng không chứa x trong khai triển \[{\left( {2{x^2} + \frac{1}{{{x^3}}}} \right)^5}\]
b) Gọi A là tập hợp tất cả các số tự nhiên gồm 4 chữ số phân biệt được chọn từ các chữ số \[0;1;2;3;4;5;6;7\]. Chọn ngẫu nhiên một số từ tập A. Tính xác suất để số chọn được là số chia hết cho 5.