Đáp án A
Phương pháp:
Sử dụng công thức \[A_k^n = \frac{{n!}}{{\left( {n - k} \right)!}}\] biến đổi và giải phương trình
Cách giải:
Ta có:
\[2A_n^4 = 3A_{n - 1}^4 \Leftrightarrow 2.\frac{{n!}}{{\left( {n - 4} \right)!}} = 3.\frac{{\left( {n - 1} \right)!}}{{\left( {n - 5} \right)!}} \Leftrightarrow 2n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right) = 3.\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)\]
\[ \Leftrightarrow 2n = 3\left( {n - 4} \right) \Leftrightarrow 2n = 3n - 12 \Leftrightarrow n = 12\].
Chú ý:
Có thể sử dụng cách thử đáp án bằng MTCT, chức năng CALC
Nhập vào màn hình \[2XP4 - 3\left( {X - 1} \right)P4\] rồi bấm CALC, nhập các giá trị ở mỗi đáp án rồi ấn “=”, nếu được kết quả bằng 0 thì chọn.
Cho hình chóp S.ABCD có đáy ABCD là tứ giác lồi. Gọi M, K lần lượt là trung điểm của SA, BC. Điểm N thuộc cạnh SC sao cho \[SN = 2NC\].
a) Tìm giao tuyến của mặt phẳng (MNK) mặt phẳng (SAB) và tìm giao điểm H của AB với mặt phẳng (MNK).
b) Xác định thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (MNK). Tính tỉ số \[\frac{{HA}}{{HB}}\]?
a) Tìm số hạng không chứa x trong khai triển \[{\left( {2{x^2} + \frac{1}{{{x^3}}}} \right)^5}\]
b) Gọi A là tập hợp tất cả các số tự nhiên gồm 4 chữ số phân biệt được chọn từ các chữ số \[0;1;2;3;4;5;6;7\]. Chọn ngẫu nhiên một số từ tập A. Tính xác suất để số chọn được là số chia hết cho 5.