Đáp án A
Phương pháp:
Các đoạn giao tuyến giữa mặt phẳng và hình chóp khi nối tiếp nhau sẽ tạo thành một đa giác phẳng, người ta gọi đó là thiết diện (hay mặt cắt) của mặt phẳng với hình chóp đó.
Cách giải:
Chóp tứ giác có 5 mặt nên thiết diện tối đa chỉ có thể là ngũ giác, không thể là lục giác.
Cho hình chóp \[S.ABCD\] có đáy là hình thang, \[AB//CD\] và \[AB = 2CD\]. Gọi O là giao điểm của AC và BD. Lấy E thuộc cạnh SA, F thuộc cạnh SC sao cho \[\frac{{SE}}{{SA}} = \frac{{SF}}{{SC}} = \frac{2}{3}\].
a) Chứng minh đường thẳng AC song song với mặt phẳng \[\left( {BEF} \right)\].
b) Xác định giao điểm N của đường thẳng SD với mặt phẳng \[\left( {BEF} \right)\] , từ đó chỉ ra thiết diện của hình chóp cắt bởi mặt phẳng \[\left( {BEF} \right)\].
c) Gọi \[\left( \alpha \right)\] là mặt phẳng qua O và song song với mặt phẳng \[\left( {BEF} \right)\]. Gọi P là giao điểm của SD với \[\left( \alpha \right)\]. Tính tỉ số \[\frac{{SP}}{{SD}}\].