Đáp án C
Phương pháp:
Số nguyên tố là số chỉ có ước là 1 và chính nó. Số nguyên tố nhỏ nhất là số 2.
Cách giải:
Ta có \[n\left( \Omega \right) = {6^3} = 216.\]
Tích số chấm xuất hiện trên mặt của 3 con súc sắc lập thành một số nguyên tố khi và chỉ khi tích đó là 2, 3 hoặc 5.
TH1: Tích bằng 2, ta có \[2 = 1.1.2 = 1.2.1 = 2.1.1 \Rightarrow \] có 3 cách.
TH2: Tích bằng 3, tương tự có 3 cách.
TH3: Tích bằng 5, tương tự có 3 cách.
Gọi A là biến cố: “Tích số chấm xuất hiện trên mặt của 3 con súc sắc lập thành một số nguyên tố”
\[ \Rightarrow n\left( A \right) = 9.\] Vậy \[P\left( A \right) = \frac{9}{{216}} = \frac{1}{{24}}.\]
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB, P là trọng tâm của tam giác BCD.
1) Chứng minh rằng: Đường thẳng MN song song với mặt phẳng \[\left( {{\rm{SCD}}} \right){\rm{.}}\]
2) Tìm giao tuyến của \[{\rm{mp}}\left( {{\rm{MNP}}} \right)\] và \[{\rm{mp}}\left( {{\rm{ABCD}}} \right){\rm{.}}\]
3) Tìm giao điểm G của đường thẳng SC và \[{\rm{mp}}\left( {{\rm{MNP}}} \right){\rm{.}}\] Tính tỷ số \[\frac{{SC}}{{SG}}.\]