Phương pháp:
Gọi số tự nhiên có 6 chữ số là \[\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \left( {{a_i} \in \left\{ {0;1;2;3;4;5;6;7} \right\};{a_1} \ne 0} \right).\] Xét các trường hợp sau:
TH1: \[{a_1} = 5;{a_2} \ge 4,{a_2} \ne 5.\]
TH2: \[{a_1} > 5.\]
Cách giải:
Gọi số tự nhiên có 6 chữ số là \[\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \left( {{a_i} \in \left\{ {0;1;2;3;4;5;6;7} \right\};{a_1} \ne 0} \right).\]
TH1: \[{a_1} = 5;{a_2} \ge 4,{a_2} \ne 5 \Rightarrow \] có 3 cách chọn \[{a_2}\] và có \[A_6^4\] cách chọn 4 chữ số còn lại \[ \Rightarrow \] có \[3A_6^4\] số.
TH2: \[{a_1} > 5 \Rightarrow \] có 2 cách chọn \[{a_1}\] và \[A_7^5\] cách chọn 5 chữ số còn lại \[ \Rightarrow \] có \[2A_7^5\] số.
Vậy có tất cả \[3A_6^4 + 2A_7^5 = 6120\] số thỏa mãn.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB, P là trọng tâm của tam giác BCD.
1) Chứng minh rằng: Đường thẳng MN song song với mặt phẳng \[\left( {{\rm{SCD}}} \right){\rm{.}}\]
2) Tìm giao tuyến của \[{\rm{mp}}\left( {{\rm{MNP}}} \right)\] và \[{\rm{mp}}\left( {{\rm{ABCD}}} \right){\rm{.}}\]
3) Tìm giao điểm G của đường thẳng SC và \[{\rm{mp}}\left( {{\rm{MNP}}} \right){\rm{.}}\] Tính tỷ số \[\frac{{SC}}{{SG}}.\]