Đáp án C
Phương pháp:
\[ - 1 \le \cos x \le 1{\rm{ }}\forall x \in \mathbb{R}.\]
Cách giải:
Ta có: \[ - 1 \le \cos x \le 1{\rm{ }}\forall x \in \mathbb{R} \Leftrightarrow - 1 \le {\left( {m - 1} \right)^2} \le 1 \Leftrightarrow {\left( {m - 1} \right)^2} \le 1 \Leftrightarrow - 1 \le m - 1 \le 1 \Leftrightarrow 0 \le m \le 2.\]
Chú ý: Những phương trình luôn đúng ta không giải, nhiều học sinh mắc sai lầm khi giải bất phương trình \[{\left( {m - 1} \right)^2} \ge - 1\] bằng phương pháp bình phương hai vế.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB, P là trọng tâm của tam giác BCD.
1) Chứng minh rằng: Đường thẳng MN song song với mặt phẳng \[\left( {{\rm{SCD}}} \right){\rm{.}}\]
2) Tìm giao tuyến của \[{\rm{mp}}\left( {{\rm{MNP}}} \right)\] và \[{\rm{mp}}\left( {{\rm{ABCD}}} \right){\rm{.}}\]
3) Tìm giao điểm G của đường thẳng SC và \[{\rm{mp}}\left( {{\rm{MNP}}} \right){\rm{.}}\] Tính tỷ số \[\frac{{SC}}{{SG}}.\]