Đáp án B
Phương pháp giải:
Khai triển nhị thức newton: \[{(x + y)^n} = \sum\limits_{i = 0}^n {C_n^i{x^i}.{y^{n - i}}} \]
Giải chi tiết:
Ta có: \[{\left( {{x^2} - 2x} \right)^{10}} = \sum\limits_{i = 0}^{10} {C_{10}^i{{\left( {{x^2}} \right)}^i}.{{\left( { - 2x} \right)}^{10 - i}}} = \sum\limits_{i = 0}^{10} {C_{10}^i{{\left( { - 2} \right)}^{10 - i}}{x^{10 + i}}} \]
Số hạng chứa \[{x^{17}}\] trong khai triển tương ứng với i thỏa mãn: \[10 + i = 17 \Leftrightarrow i = 7\]
Hệ số của số hạng chứa \[{x^{17}}\] trong khai triển là: \[C_{10}^7{\left( { - 2} \right)^{10 - 7}} = - C_{10}^3{.2^3}\].
Tính giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên khoảng \[\left[ { - \frac{\pi }{3};\frac{\pi }{2}} \right]\]
\[y = \cos 2x + \sin {\mkern 1mu} x - \sqrt 3 \left( {\sin 2x + \cos x} \right) + 3\]