Có bao nhiêu giá trị nguyên của tham số \(m\) sao cho hàm số \(f\left( x \right) = \frac{1}{3}{x^3} + m{x^2} + 4x + 2020\) đồng biến trên \(\mathbb{R}\)?
Hàm số đồng biến trên \(\mathbb{R}\)\( \Leftrightarrow {\Delta _{y'}} \le 0 \Leftrightarrow 4{m^2} - 16 \le 0 \Leftrightarrow - 2 \le m \le 2\).
Vậy có 5 giá trị nguyên của tham số \(m\) thỏa mãn là: \( - 2; - 1;0;1;2\).
Câu trả lời này có hữu ích không?
0
0
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(f\left( x \right) = \frac{{16\sin x - 4}}{{16{{\sin }^2}x - 4\sin x + 9}}\). Gọi \(M\) là giá trị lớn nhất và \(m\) là giá trị nhỏ nhất của hàm số đã cho. Chọn mệnh đề đúng.
Để thiết kế một chiếc bể cá hình hộp chữ nhật có chiều cao là \(60\,{\rm{cm}}\), thể tích \[96000\,{\rm{c}}{{\rm{m}}^3}\]. Người thợ dùng loại kính để sử dụng làm mặt bên có giá thành \(70000\)VNĐ/m2 và loại kính để làm mặt đáy có giá thành \(100000\) VNĐ/m2. Tính chi phí thấp nhất để hoàn thành bể cá.
Cho hình lập phương \(ABCD.A'B'C'D'\), khoảng cách từ \(C'\) đến mặt phẳng \(\left( {A'BD} \right)\) bằng \(\frac{{4a\sqrt 3 }}{3}.\) Tính theo \(a\) thể tích khối lập phương \(ABCD.A'B'C'D'\,.\)
Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có \(AB = a\) và có thể tích bằng\(\frac{{{a^3}\sqrt 6 }}{4}\).Góc giữa hai đường thẳng \(AB'\) và \(BC'\) bằng
Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 2020\,;\,2020} \right]\)để đồ thị hàm số \(y = \frac{{x + 2}}{{\sqrt {{x^2} - 2x + m} }}\) có hai đường tiệm cận đứng?
Tìm tất cả các giá trị thực của tham số \(m\) sao cho đồ thị của hàm số \(y = - {x^4} + 2\left( {m + 1} \right){x^2} - {m^2}\) có ba điểm cực trị tạo thành một tam giác vuông cân.
Cho khối lăng trụ \[ABC.A'B'C'\] có thể tích bằng 2020. Gọi \[M,N\] lần lượt là trung điểm của \[AA'\]; \[BB'\]và điểm \(P\) nằm trên cạnh \(CC'\)sao cho \[PC = 3PC'\]. Thể tích của khối đa diện lồi có các đỉnh là các điểm \[A,B,C,M,N,P\] bằng