IMG-LOGO

Câu hỏi:

18/07/2024 43

Số tiệm cận của đồ thị hàm số \(y = \frac{{{x^2} - 6x + 3}}{{{x^2} - 3x + 2}}\)

A. 6

B. 2

C. 1

D. 3

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Đáp án D

Phương pháp:

* Định nghĩa tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right)\)

Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = a\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = a \Rightarrow y = a\)là TCN của đồ thị hàm số.

* Định nghĩa tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right)\)

Nếu \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = - \infty \) hoặc \(\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = + \infty \) hoặc \(\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = - \infty \) thì \(x = a\) là TCĐ của đồ thị hàm số.

Cách giải:

\(y = \frac{{{x^2} - 6x + 3}}{{{x^2} - 3x + 2}}\) (TXĐ: \(D = R\backslash \left\{ {1;2} \right\}\))

\(\mathop {\lim }\limits_{x \to \infty } \frac{{{x^2} - 6x + 3}}{{{x^2} - 3x + 2}} = 1 \Rightarrow \)Đồ thị hàm số có TCN \(y = 1\)

\(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} - 6x + 3}}{{{x^2} - 3x + 2}} = + \infty ,\,\,\,\mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} - 6x + 3}}{{{x^2} - 3x + 2}} = - \infty ,\,\,\,\mathop {\lim }\limits_{x \to {2^ + }} \frac{{{x^2} - 6x + 3}}{{{x^2} - 3x + 2}} = - \infty ,\,\,\,\mathop {\lim }\limits_{x \to {2^ - }} \frac{{{x^2} - 6x + 3}}{{{x^2} - 3x + 2}} = + \infty \)

\( \Rightarrow \) Đồ thị hàm số có 2 TCĐ \(x = 1,\,\,x = 2\)

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Giả sử A và B là các giao điểm của đường cong \(y = {x^3} - 3x + 2\) và trục hoành. Tính độ dài đoạn thẳng AB:

Xem đáp án » 27/06/2023 93

Câu 2:

Cho hình chóp S.ABC có \(SA = a,\,\,SB = b,\,\,SC = c\)\(ASB = BSC = CSA = {60^0}\). Tính thể tích của khối chóp S.ABC.

Xem đáp án » 27/06/2023 76

Câu 3:

Giá trị nhỏ nhất của số thực m để hàm số \(y = \frac{1}{3}{x^3} + m{x^2} - mx - m\) đồng biến trên \(\mathbb{R}\) là:

Xem đáp án » 27/06/2023 74

Câu 4:

Cho khối chóp \(S.ABC\)\(SA \bot \left( {ABC} \right)\); tam giác ABC vuông tại A, biết \(BC = 3a;\,\,\,AB = a\). Góc giữa mặt phẳng \(\left( {SBC} \right)\)\(\left( {ABC} \right)\) bằng \({45^0}\). Tính thể tích khối chóp S.ABC theo a.

Xem đáp án » 27/06/2023 67

Câu 5:

Cho bất phương trình \({\log _{\frac{1}{5}}}f\left( x \right) > {\log _{\frac{1}{5}}}g\left( x \right)\). Khi đó, bất phương trình tương đương:

Xem đáp án » 27/06/2023 60

Câu 6:

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc tạo bởi mặt bên và mặt đáy là \(\alpha \). Thể tích khối chóp S.ABCD là:

Xem đáp án » 27/06/2023 56

Câu 7:

Giá trị lớn nhất của hàm số \(f\left( x \right) = \frac{{mx - 1}}{{2x + m}}\) trên đoạn \(\left[ {3;5} \right]\) bằng 2 khi và chỉ khi:

Xem đáp án » 27/06/2023 55

Câu 8:

Điều kiện cần và đủ của tham số m để hàm số \(y = {x^3} - {x^2} + mx - 5\) có cực trị là:

Xem đáp án » 27/06/2023 54

Câu 9:

Cho các số thực x, y và a thỏa mãn \(x > y;\,\,a > 1\). Khi đó

Xem đáp án » 27/06/2023 54

Câu 10:

Gọi \({y_1},\,{y_2}\) lần lượt là giá trị cực đại và giá trị cực tiểu của hàm số \(y = - {x^4} + 10{x^2} - 9\) . Khi đó, \(\left| {{y_1} - {y_2}} \right|\) bằng:

Xem đáp án » 27/06/2023 53

Câu 11:

Tính đạo hàm của hàm số \(y = x\ln x\)

Xem đáp án » 27/06/2023 53

Câu 12:

Cho hàm số \(y = {x^3} - 2m{x^2} + 1\) có đồ thị \(\left( {{C_m}} \right)\). Tìm m sao cho \(\left( {{C_m}} \right)\) cắt đường thẳng \(d:y = x + 1\) tại ba điểm phân biệt có hoành độ \({x_1},\,{x_2},\,{x_3}\) thỏa mãn \({x_1} + {x_2} + {x_3} = 101\)

Xem đáp án » 27/06/2023 52

Câu 13:

Phương trình \({3^{2x + 1}} - {4.3^x} \({x_1},\,{x_2}\) trong đó \({x_1} < {x_2}\), chọn phát biểu đúng.

Xem đáp án » 27/06/2023 52

Câu 14:

Giá trị nhỏ nhất của hàm số \(y = x\sqrt {1 - {x^2}} \) là:

Xem đáp án » 27/06/2023 52

Câu 15:

Giải bất phương trình \({\log _{\frac{1}{5}}}\left( {5x - 3} \right) > - 2\), có nghiệm là:

Xem đáp án » 27/06/2023 52

Câu hỏi mới nhất

Xem thêm »
Xem thêm »