Cho hàm số \(y = \frac{{3x + 1}}{{x - 1}}\). Chọn khẳng định đúng:
A. Hàm số nghịch biến trên \(\left( { - \infty ;1} \right) \cup \left( {1; + \infty } \right)\)
B. Hàm số nghịch biến trên từng khoảng xác định của nó.
C. Hàm số đồng biến trên R.
D. Hàm số nghịch biến trên R.
Đáp án B
Phương pháp:
Hàm phân thức bậc nhất trên bậc nhất đơn điệu trên từng khoảng xác định của nó.
Cách giải:
TXĐ: \(D = R\backslash \left\{ 1 \right\}\)
\(y = \frac{{3x + 1}}{{x - 1}} \Rightarrow y' = \frac{{3.\left( { - 1} \right) - 1.1}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{ - 4}}{{{{\left( {x - 1} \right)}^2}}} < 0,\,\,\forall x \ne 1\)
\( \Rightarrow \) Hàm số nghịch biến trên các khoảng \(\left( { - \infty ;1} \right),\,\,\left( {1; + \infty } \right)\)
Giả sử A và B là các giao điểm của đường cong \(y = {x^3} - 3x + 2\) và trục hoành. Tính độ dài đoạn thẳng AB:
Cho hình chóp S.ABC có \(SA = a,\,\,SB = b,\,\,SC = c\) và \(ASB = BSC = CSA = {60^0}\). Tính thể tích của khối chóp S.ABC.
Giá trị nhỏ nhất của số thực m để hàm số \(y = \frac{1}{3}{x^3} + m{x^2} - mx - m\) đồng biến trên \(\mathbb{R}\) là:
Cho khối chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\); tam giác ABC vuông tại A, biết \(BC = 3a;\,\,\,AB = a\). Góc giữa mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABC} \right)\) bằng \({45^0}\). Tính thể tích khối chóp S.ABC theo a.
Gọi M và m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = 2{\sin ^2}x - \cos \,x + 1\). Thể thì M.m bằng:
Cho bất phương trình \({\log _{\frac{1}{5}}}f\left( x \right) > {\log _{\frac{1}{5}}}g\left( x \right)\). Khi đó, bất phương trình tương đương:
Điều kiện cần và đủ của tham số m để hàm số \(y = {x^3} - {x^2} + mx - 5\) có cực trị là:
Phương trình \({3^{2x + 1}} - {4.3^x} \({x_1},\,{x_2}\) trong đó \({x_1} < {x_2}\), chọn phát biểu đúng.
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị trong hình bên. Hỏi phương trình \(y = a{x^3} + b{x^2} + cx + 2 = 0\) có bao nhiêu nghiệm?
Tập xác định của hàm số \(y = {\log _2}\frac{{x + 3}}{{2 - x}}\) là:
Giá trị lớn nhất của hàm số \(f\left( x \right) = \frac{{mx - 1}}{{2x + m}}\) trên đoạn \(\left[ {3;5} \right]\) bằng 2 khi và chỉ khi:
Cho hàm số \(y = {x^3} - 2m{x^2} + 1\) có đồ thị \(\left( {{C_m}} \right)\). Tìm m sao cho \(\left( {{C_m}} \right)\) cắt đường thẳng \(d:y = x + 1\) tại ba điểm phân biệt có hoành độ \({x_1},\,{x_2},\,{x_3}\) thỏa mãn \({x_1} + {x_2} + {x_3} = 101\)