IMG-LOGO

Câu hỏi:

23/07/2024 151

Cho tam giác ABC nhọn (AB > AC), có \(\widehat B = 45^\circ \) và vẽ đường cao AH. Gọi M là trung điểm của AB. P là điểm đối xứng với H qua M.

a) Chứng minh rằng tứ giác AHBP là hình vuông.

b) Vẽ đường cao BK của tam giác ABC. Chứng minh rằng HP = 2MK.

c) Gọi D là giao điểm của AH và BK. Qua D và C vẽ các đường thẳng song song với BC và AH sao cho chúng cắt nhau tại Q. Chứng minh: ba điểm P, K, Q thẳng hàng.

d) Chứng minh các đường thẳng CD, AB và PQ đồng quy.

Trả lời:

verified Giải bởi Vietjack

Lời giải

Media VietJack

a) Ta có P là điểm đối xứng với H qua M (giả thiết).

Suy ra M là trung điểm của PH.

Mà M cũng là trung điểm của AB (giả thiết).

Do đó tứ giác AHBP là hình bình hành   (1)

∆ABH có: AH BH và \(\widehat {ABH} = 45^\circ \).

Suy ra ∆ABH vuông cân tại H.

Do đó AH = BH và \(\widehat {AHB} = 90^\circ \)   (2)

Từ (1), (2), ta được tứ giác AHBP là hình vuông.

b) ∆ABK vuông tại K có KM là đường trung tuyến.

Suy ra \(MK = \frac{1}{2}AB\).

Mà AB = HP (do AHBP là hình vuông).

Do đó \(MK = \frac{1}{2}HP\).

Vậy HP = 2MK.

c) Ta có DQ // BC (giả thiết) và DH BC (do AH là đường cao của ∆ABC).

Suy ra DQ DH hay \(\widehat {HDQ} = 90^\circ \)   (3)

Chứng minh tương tự, ta được \(\widehat {HCQ} = 90^\circ \)   (4)

\(\widehat {DHC} = 90^\circ \) (do AH là đường cao của ∆ABC)   (5)

Từ (3), (4), (5), ta được tứ giác DHCQ là hình chữ nhật.

Gọi F là giao điểm của CD và HQ.

Suy ra F là trung điểm của CD và HQ.

Do đó FD = FC = FQ = FH.

Ta có ∆DKC vuông tại K. Suy ra KF = FD = FC = FQ = FH.

Khi đó ∆HKQ vuông tại K.

Vì vậy HK KQ.

Chứng minh tương tự, ta được HK PK.

Ta có \(\widehat {PKH} + \widehat {HKQ} = 90^\circ + 90^\circ = 180^\circ \).

Vậy ba điểm P, K, Q thẳng hàng.

d) Gọi E là giao điểm của CD và AB.

∆ABC có BK, AH là hai đường cao cắt nhau tại D.

Suy ra D là trực tâm của ∆ABC.

Khi đó CD AB tại E.

∆BCE có \(\widehat {BCE} = 180^\circ - \widehat {BEC} - \widehat {EBC} = 180^\circ - 90^\circ - 45^\circ = 45^\circ \).

Suy ra \(\widehat {DCQ} = \widehat {HCQ} - \widehat {HCD} = 90^\circ - 45^\circ = 45^\circ \).

Khi đó CD là tia phân giác của \(\widehat {HCQ}\).

Mà tứ giác HCQD là hình chữ nhật (chứng minh trên).

Vì vậy HCQD là hình vuông.

Tứ giác MHFE có \(\widehat {HFD} = 90^\circ \) (HCQD là hình vuông); \(\widehat {MEF} = 90^\circ \) (FE AB) và \(\widehat {EMH} = 90^\circ \) (AHBP là hình vuông).

Suy ra tứ giác MHFE là hình chữ nhật.

Khi đó \(EF = MH = \frac{1}{2}HP\) và EF // MH.

∆PHQ, có: EF // PH và F là trung điểm của HQ.

Suy ra EF đi qua trung điểm của cạnh PQ.

\(EF = MH = \frac{1}{2}HP\) (chứng minh trên).

Suy ra E là trung điểm của PQ.

Khi đó ba điểm P, E, Q thẳng hàng.

Vậy các đường thẳng CD, AB và PQ đồng quy tại E.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn tâm O có đường kính AB = 2R. Từ trung điểm H của đoạn OB, kẻ đường thẳng vuông góc với AB cắt đường tròn (O) tại C và D.

a) Chứng minh HC = HD và tứ giác ODBC là hình thoi.

b) Tính số đo của \[\widehat {BOC}\].

c) Gọi M là điểm đối xứng của O qua B. Chứng minh MC là tiếp tuyến tại C của đường tròn (O). Tính MC theo R.

d) Qua O kẻ đường thẳng vuông góc với OC cắt CD ở I. Chứng minh HI.HD + HB.HM = R2.

Xem đáp án » 18/07/2023 723

Câu 2:

Cho đường tròn (O; R), từ một điểm A trên (O) kẻ tiếp tuyến d với (O). Trên đường thẳng d lấy điểm M bất kì (M khác A), kẻ cát tuyến MNP và gọi K là trung điểm của NP, kẻ tiếp tuyến MB (B là tiếp điểm). Kẻ AC MB, BD MA. Gọi H là giao điểm của AC và BD, I là giao điểm của OM và AB.

1) Chứng minh tứ giác AMBO nội tiếp.

2) Chứng minh năm điểm O, K, A, M, B cùng nằm trên một đường tròn.

3) Chứng minh OI.OM = R2; OI.IM = IA2.

4) Chứng minh OAHB là hình thoi.

5) Chứng minh ba điểm O, H, M thẳng hàng.

6) Tìm quỹ tích của điểm H khi M di chuyển trên đường thẳng d.

Xem đáp án » 18/07/2023 256

Câu 3:

Cho tam giác ABC cân tại A, AM là đường cao. Gọi N là trung điểm AC, D là điểm đối xứng của M qua N.

a) Tứ giác ADCM là hình gì? Vì sao?

b) Chứng minh tứ giác ABMD là hình bình hành và BD đi qua trung điểm O của AM.

c) BD cắt AC tại I. Chứng minh \(DI = \frac{2}{3}OB\).

d) E là hình chiếu của N trên BC. Tam giác ABC cân ban đầu cần thêm điều kiện gì để tứ giác ONEM là hình vuông?

Xem đáp án » 18/07/2023 221

Câu 4:

Thực hiện phép tính: \(C = \left( {\frac{{171717}}{{151515}} + \frac{{171717}}{{353535}} + \frac{{171717}}{{636363}} + \frac{{171717}}{{999999}}} \right):\frac{8}{{11}}\).

Xem đáp án » 18/07/2023 156

Câu 5:

Cho tam giác ABC cân tại A, O là trung điểm của BC. Vẽ đường tròn tâm O tiếp xúc với AB, AC tại H, K. Một tiếp tuyến với đường tròn (O) cắt các cạnh AB, AC ở M, N.

a) Cho \(\widehat B = \widehat C = \alpha \). Tính \(\widehat {MON}\).

b) Chứng minh rằng OM, ON chia tứ giác BMNC thành ba tam giác đồng dạng.

c) Cho BC = 2a. Tính tích BM.CN.

d) Tiếp tuyến MN ở vị trí nào thì tổng BM + CN nhỏ nhất?

Xem đáp án » 18/07/2023 148

Câu 6:

Cho nửa đường tròn (O; R) có đường kính AB. Kẻ hai tiếp tuyến Ax và By nằm cùng phía với nửa đường tròn. M là điểm bất kì trên nửa đường tròn (M khác A và B). Tiếp tuyến tại M của nửa đường tròn cắt Ax và By lần lượt tại E và N.

a) Chứng minh AOME và BOMN là các tứ giác nội tiếp.

b) Chứng minh AE.BN = R2.

c) Kẻ MH vuông góc By. Đường thẳng MH cắt OE tại K. Chứng minh AK MN.

d) Giả sử \[\widehat {MAB} = \alpha \] và MB < MA. Tính diện tích phần tứ giác BOMH ở bên ngoài nửa đường tròn (O) theo R và α.

e) Xác định vị trí của điểm M trên nửa đường tròn (O) để K nằm trên đường tròn (O).

Xem đáp án » 18/07/2023 138

Câu 7:

Cho đường thẳng (d): y = 2x + m và parabol (P): y = x2. Tìm m để (d) cắt (P) tại hai điểm nằm về hai phía của trục tung.

Xem đáp án » 18/07/2023 104

Câu 8:

Cho hình lăng trụ đứng ABC.A’B’C’ có tất cả các cạnh bằng a. Gọi M là trung điểm của CC’. Khoảng cách từ M đến mặt phẳng (A’BC) bằng

Xem đáp án » 18/07/2023 103

Câu 9:

Tính B = x5 – 15x4 + 16x3 – 29x2 + 13x tại x = 14.

Xem đáp án » 18/07/2023 95

Câu 10:

Cho (d): y = mx – 2 và (P): y = –x2.

a) Chứng minh rằng (d) luôn cắt (P) tại hai điểm nằm về hai phía của trục tung với mọi giá trị của m.

b) Tìm m sao cho y1 + y2 = –8.y1.y2.

Xem đáp án » 18/07/2023 80

Câu 11:

Cho khối lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác cân với AB = AC = a, \(\widehat {BAC} = 120^\circ \). Mặt phẳng (AB’C’) tạo với đáy một góc 60°. Tính thể tích V của khối lăng trụ đã cho.

Xem đáp án » 18/07/2023 76

Câu 12:

Giá trị nhỏ nhất của hàm số y = sin2x + sinx – 3 là:

Xem đáp án » 18/07/2023 74

Câu 13:

Cho khối lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác cân với AB = AC = a, \(\widehat {BAC} = 120^\circ \). Mặt phẳng (A’BC’) tạo với đáy một góc 60°. Thể tích của khối lăng trụ đã cho bằng:

Xem đáp án » 18/07/2023 74

Câu 14:

Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(2; 4), B(5; 1), C(–1; –2). Phép tịnh tiến theo \(\overrightarrow {BC} \) biến tam giác ABC thành tam giác A’B’C’. Tìm tọa độ trọng tâm của tam giác A’B’C’.

Xem đáp án » 18/07/2023 73

Câu 15:

Cho parabol (P): y = x2 và đường thẳng (d): y = 2x – m (m là tham số). Tìm các giá trị của m để (P) và (d) có điểm chung duy nhất.

Xem đáp án » 18/07/2023 72

Câu hỏi mới nhất

Xem thêm »
Xem thêm »