Lời giải
Điều kiện: n ∈ ℕ.
Ta có A = n3 – 4n2 + 4n – 1
= (n3 – 1) – (4n2 – 4n)
= (n – 1)(n2 + n + 1) – 4n(n – 1)
= (n – 1)(n2 + n + 1 – 4n)
= (n – 1)(n2 – 3n + 1).
Để A là số nguyên tố thì A là tích của 1 và chính nó (A > 1).
\( \Rightarrow \left[ \begin{array}{l}n - 1 = 1\\{n^2} - 3n + 1 = 1\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}n = 2\\{n^2} - 3n = 0\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}n = 2\\n\left( {n - 3} \right) = 0\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}n = 2\\n = 0\\n - 3 = 0\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}n = 2\\n = 0\\n = 3\end{array} \right.\)
Với n = 2, ta có: A = n3 – 4n2 + 4n – 1 = 23 – 4.22 + 4.2 – 1 = –1 < 1.
Do đó ta loại n = 2.
Với n = 0, ta có: A = n3 – 4n2 + 4n – 1 = 03 – 4.02 + 4.0 – 1 = –1 < 1.
Do đó ta loại n = 0.
Với n = 3, ta có: A = n3 – 4n2 + 4n – 1 = 33 – 4.32 + 4.3 – 1 = 2 > 1.
Do đó ta nhận n = 3.
So với điều kiện n ∈ ℕ, ta nhận n = 3.
Vậy n = 3 thỏa mãn yêu cầu bài toán.
Cho tam giác ABC nhọn, vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H.
a) Chứng minh tứ giác AEHF nội tiếp.
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu \(\widehat {BAC} = 60^\circ \), AH = 4 cm.
c) AH giao BC tại D. Chứng minh FH là tia phân giác của \(\widehat {DFE}\).
d) Chứng minh 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại một điểm.
Cho tam giác ABC nhọn. Vẽ đường tròn tâm O đường kính BC cắt AB, AC theo thứ tự tại D và E.
a) Chứng minh CD vuông góc với AB, BE vuông góc với AC.
b) Gọi K là giao điểm của BE và CD. Chứng minh AK vuông góc với BC.
Cho tam giác ABC có AB = AC. Gọi D là trung điểm của cạnh BC.
a) Chứng minh rằng ∆ABD = ∆ACD và AD là tia phân giác của \(\widehat {BAC}\).
b) Vẽ DM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho AN = AM. Chứng minh ∆ADM = ∆ADN và DN vuông góc AC.
c) Gọi K là trung điểm của đoạn thẳng CN. Trên tia đối của tia KD lấy điểm E sao cho KE = KD. Chứng minh M, E, N thẳng hàng.
Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh:
a) ∆ADB = ∆ADC.
b) AD là tia phân giác của \(\widehat {BAC}\) và \(\widehat B = \widehat C\).
c) AD vuông góc với BC.
a) Cho biểu thức \[A = \frac{{\sqrt x - 1}}{{\sqrt x + 2}}\] với x ≥ 0. Tính giá trị của A khi x = 16.
b) Cho biểu thức \(B = \frac{{\sqrt x + 3}}{{\sqrt x + 1}} - \frac{5}{{1 - \sqrt x }} + \frac{4}{{x - 1}}\) với x ≥ 0; x ≠ 1. Rút gọn B.
c) Tìm các số hữu tỉ x để P = A.B có giá trị nguyên.
Cho hai điểm phân biệt A và B. Tìm điểm M thỏa mãn một trong các điều kiện sau:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow 0 \).