Lời giải
Ta có 7(x2 + xy + y2) = 39(x + y).
⇔ 7.[(x + y)2 – xy] = 39(x + y).
⇔ 7(x + y)2 – 39(x + y) = 7xy.
⇔ 28(x + y)2 – 156(x + y) = 7.4xy (1)
Ta có (x – y)2 ≥ 0, ∀x, y ∈ ℝ.
⇔ x2 – 2xy + y2 ≥ 0, ∀x, y ∈ ℝ.
⇔ x2 + 2xy + y2 ≥ 4xy, ∀x, y ∈ ℝ.
⇔ (x + y)2 ≥ 4xy, ∀x, y ∈ ℝ.
⇔ 7(x + y)2 ≥ 7.4xy, ∀x, y ∈ ℝ.
⇔ 7(x + y)2 ≥ 28(x + y)2 – 156(x + y), ∀x, y ∈ ℝ (2)
Đặt t = x + y.
Khi đó (2) tương đương với: 7t2 ≥ 28t2 – 156t.
⇔ 21t2 – 156t ≤ 0.
⇔ t(21t – 156) ≤ 0.
\[ \Leftrightarrow 0 \le t \le \frac{{52}}{7}\].
⇔ 0 ≤ t ≤ 7.
Thế t = x + y vào (1), ta được: 7t2 – 39t = 7xy.
\( \Leftrightarrow {t^2} - \frac{{39}}{7}t = xy\).
Vì x, y là các số nguyên nên t nguyên và xy nguyên.
Khi đó \(\frac{{39}}{7}t\) nguyên.
Vì vậy t ⋮ 7.
Mà 0 ≤ t ≤ 7.
Suy ra t = 0 hoặc t = 7.
Với t = 0, ta có: x + y = 0 ⇔ x = –y.
Thế x = –y vào phương trình ban đầu, ta được: 7(y2 – y2 + y2) = 39(–y + y).
⇔ 7y2 = 0 ⇔ y2 = 0 ⇔ y = 0.
Khi đó x = –y = 0.
Với t = 7, ta có: x + y = 7 ⇔ x = 7 – y.
Thế x = 7 – y vào phương trình ban đầu, ta được:
7[(7 – y)2 + (7 – y)y + y2] = 39(7 – y + y).
⇔ 7.(49 – 14y + y2 + 7y – y2 + y2) = 273.
⇔ 7.(49 – 7y + y2) = 273.
⇔ 343 – 49y + 7y2 = 273.
⇔ 70 – 49y + 7y2 = 0.
⇔ 7(y – 5)(y – 2) = 0.
⇔ y = 5 hoặc y = 2.
Với y = 5, ta có: x = 7 – y = 7 – 5 = 2.
Với y = 2, ta có: x = 7 – y = 7 – 2 = 5.
Vậy phương trình đã cho có nghiệm là: (x; y) = (0; 0), (2; 5), (5; 2).
Cho tam giác ABC nhọn, vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H.
a) Chứng minh tứ giác AEHF nội tiếp.
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu \(\widehat {BAC} = 60^\circ \), AH = 4 cm.
c) AH giao BC tại D. Chứng minh FH là tia phân giác của \(\widehat {DFE}\).
d) Chứng minh 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại một điểm.
Cho tam giác ABC nhọn. Vẽ đường tròn tâm O đường kính BC cắt AB, AC theo thứ tự tại D và E.
a) Chứng minh CD vuông góc với AB, BE vuông góc với AC.
b) Gọi K là giao điểm của BE và CD. Chứng minh AK vuông góc với BC.
Cho tam giác ABC có AB = AC. Gọi D là trung điểm của cạnh BC.
a) Chứng minh rằng ∆ABD = ∆ACD và AD là tia phân giác của \(\widehat {BAC}\).
b) Vẽ DM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho AN = AM. Chứng minh ∆ADM = ∆ADN và DN vuông góc AC.
c) Gọi K là trung điểm của đoạn thẳng CN. Trên tia đối của tia KD lấy điểm E sao cho KE = KD. Chứng minh M, E, N thẳng hàng.
Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh:
a) ∆ADB = ∆ADC.
b) AD là tia phân giác của \(\widehat {BAC}\) và \(\widehat B = \widehat C\).
c) AD vuông góc với BC.
a) Cho biểu thức \[A = \frac{{\sqrt x - 1}}{{\sqrt x + 2}}\] với x ≥ 0. Tính giá trị của A khi x = 16.
b) Cho biểu thức \(B = \frac{{\sqrt x + 3}}{{\sqrt x + 1}} - \frac{5}{{1 - \sqrt x }} + \frac{4}{{x - 1}}\) với x ≥ 0; x ≠ 1. Rút gọn B.
c) Tìm các số hữu tỉ x để P = A.B có giá trị nguyên.
Cho tam giác ABC. Hãy tìm các điểm M thỏa các điều kiện:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow {BA} \).
d) \(\left| {\overrightarrow {MA} - \overrightarrow {CA} } \right| = \left| {\overrightarrow {AC} - \overrightarrow {AB} } \right|\).