Lời giải
Đáp án đúng là: C
Điều kiện: x ≥ 10; x ∈ ℕ (*)
Ta có \[A_x^{10} + A_x^9 = 9A_x^8\].
\( \Leftrightarrow \frac{{x!}}{{\left( {x - 10} \right)!}} + \frac{{x!}}{{\left( {x - 9} \right)!}} = 9.\frac{{x!}}{{\left( {x - 8} \right)!}}\)
\( \Leftrightarrow \frac{{x!}}{{\left( {x - 10} \right)!}} + \frac{{x!}}{{\left( {x - 9} \right)\left( {x - 10} \right)!}} = 9.\frac{{x!}}{{\left( {x - 8} \right)\left( {x - 9} \right)\left( {x - 10} \right)!}}\)
\( \Leftrightarrow \frac{{x!}}{{\left( {x - 10} \right)!}}\left( {1 + \frac{1}{{x - 9}} - \frac{9}{{\left( {x - 8} \right)\left( {x - 9} \right)}}} \right) = 0\) \(\left( {\frac{{x!}}{{\left( {x - 10} \right)!}} \ne 0,\,\forall x \ge 10;\,x \in \mathbb{N}} \right)\)
\( \Leftrightarrow 1 + \frac{1}{{x - 9}} - \frac{9}{{\left( {x - 8} \right)\left( {x - 9} \right)}} = 0\)
⇔ (x – 8)(x – 9) + x – 8 – 9 = 0
⇔ x2 – 17x + 72 + x – 17 = 0
⇔ x2 – 16x + 55 = 0
\( \Leftrightarrow \left[ \begin{array}{l}x = 11\\x = 5\end{array} \right.\)
So với điều kiện (*), ta nhận x = 11.
Vậy phương trình đã cho có nghiệm là x = 11.
Do đó ta chọn phương án C.
Cho tam giác ABC nhọn, vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H.
a) Chứng minh tứ giác AEHF nội tiếp.
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu \(\widehat {BAC} = 60^\circ \), AH = 4 cm.
c) AH giao BC tại D. Chứng minh FH là tia phân giác của \(\widehat {DFE}\).
d) Chứng minh 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại một điểm.
Cho tam giác ABC nhọn. Vẽ đường tròn tâm O đường kính BC cắt AB, AC theo thứ tự tại D và E.
a) Chứng minh CD vuông góc với AB, BE vuông góc với AC.
b) Gọi K là giao điểm của BE và CD. Chứng minh AK vuông góc với BC.
Cho tam giác ABC có AB = AC. Gọi D là trung điểm của cạnh BC.
a) Chứng minh rằng ∆ABD = ∆ACD và AD là tia phân giác của \(\widehat {BAC}\).
b) Vẽ DM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho AN = AM. Chứng minh ∆ADM = ∆ADN và DN vuông góc AC.
c) Gọi K là trung điểm của đoạn thẳng CN. Trên tia đối của tia KD lấy điểm E sao cho KE = KD. Chứng minh M, E, N thẳng hàng.
Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh:
a) ∆ADB = ∆ADC.
b) AD là tia phân giác của \(\widehat {BAC}\) và \(\widehat B = \widehat C\).
c) AD vuông góc với BC.
a) Cho biểu thức \[A = \frac{{\sqrt x - 1}}{{\sqrt x + 2}}\] với x ≥ 0. Tính giá trị của A khi x = 16.
b) Cho biểu thức \(B = \frac{{\sqrt x + 3}}{{\sqrt x + 1}} - \frac{5}{{1 - \sqrt x }} + \frac{4}{{x - 1}}\) với x ≥ 0; x ≠ 1. Rút gọn B.
c) Tìm các số hữu tỉ x để P = A.B có giá trị nguyên.
Cho hai điểm phân biệt A và B. Tìm điểm M thỏa mãn một trong các điều kiện sau:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow 0 \).