Tìm giá trị lớn nhất và nhỏ nhất của biểu thức:
a) A = cos4x – cos2x + sin2x;
b) B = sin4x – sin2x + cos2x.
Lời giải
a) A = cos4x – cos2x + sin2x
= cos4x – cos2x + 1 – cos2x
= cos4x – 2cos2x + 1
= (cos2x – 1)2
= (–sin2x)2
= sin4x.
Ta có –1 ≤ sinx ≤ 1, ∀x.
⇔ 0 ≤ sin4x ≤ 1, ∀x.
⇔ 0 ≤ A ≤ 1, ∀x.
Dấu “=” xảy ra \( \Leftrightarrow \left[ \begin{array}{l}\sin x = 0\\\sin x = 1\\\sin x = - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x = \frac{\pi }{2} + k2\pi \\x = - \frac{\pi }{2} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x = \frac{\pi }{2} + k\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\).
Vậy maxA = 1 khi và chỉ khi \(x = \frac{\pi }{2} + k\pi \) và minA = 0 khi và chỉ khi x = kπ (k ∈ ℤ).
b) B = sin4x – sin2x + cos2x
= sin4x – sin2x + 1 – sin2x
= sin4x – 2sin2x + 1
= (sin2x – 1)2
= (–cos2x)2
= cos4x.
Ta có –1 ≤ cosx ≤ 1, ∀x.
⇔ 0 ≤ cos4x ≤ 1, ∀x.
⇔ 0 ≤ B ≤ 1, ∀x.
Dấu “=” xảy ra \( \Leftrightarrow \left[ \begin{array}{l}\cos x = 0\\\cos x = 1\\\cos x = - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2} + k\pi \\x = k2\pi \\x = \pi + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2} + k\pi \\x = k\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\).
Vậy maxB = 1 khi và chỉ khi x = kπ và minB = 0 khi và chỉ khi \(x = \frac{\pi }{2} + k\pi \) (k ∈ ℤ).
Cho tam giác ABC nhọn, vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H.
a) Chứng minh tứ giác AEHF nội tiếp.
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu \(\widehat {BAC} = 60^\circ \), AH = 4 cm.
c) AH giao BC tại D. Chứng minh FH là tia phân giác của \(\widehat {DFE}\).
d) Chứng minh 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại một điểm.
Cho tam giác ABC nhọn. Vẽ đường tròn tâm O đường kính BC cắt AB, AC theo thứ tự tại D và E.
a) Chứng minh CD vuông góc với AB, BE vuông góc với AC.
b) Gọi K là giao điểm của BE và CD. Chứng minh AK vuông góc với BC.
Cho tam giác ABC có AB = AC. Gọi D là trung điểm của cạnh BC.
a) Chứng minh rằng ∆ABD = ∆ACD và AD là tia phân giác của \(\widehat {BAC}\).
b) Vẽ DM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho AN = AM. Chứng minh ∆ADM = ∆ADN và DN vuông góc AC.
c) Gọi K là trung điểm của đoạn thẳng CN. Trên tia đối của tia KD lấy điểm E sao cho KE = KD. Chứng minh M, E, N thẳng hàng.
Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh:
a) ∆ADB = ∆ADC.
b) AD là tia phân giác của \(\widehat {BAC}\) và \(\widehat B = \widehat C\).
c) AD vuông góc với BC.
a) Cho biểu thức \[A = \frac{{\sqrt x - 1}}{{\sqrt x + 2}}\] với x ≥ 0. Tính giá trị của A khi x = 16.
b) Cho biểu thức \(B = \frac{{\sqrt x + 3}}{{\sqrt x + 1}} - \frac{5}{{1 - \sqrt x }} + \frac{4}{{x - 1}}\) với x ≥ 0; x ≠ 1. Rút gọn B.
c) Tìm các số hữu tỉ x để P = A.B có giá trị nguyên.
Cho hai điểm phân biệt A và B. Tìm điểm M thỏa mãn một trong các điều kiện sau:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow 0 \).