IMG-LOGO

Câu hỏi:

25/06/2024 53

Cho hình bình hành ABCD có \(\widehat A = 120^\circ \). Tia phân giác của \(\widehat D\) qua trung điểm I của AB. Kẻ AH vuông góc với DC. Chứng minh rằng:

a) AB = 2AD.

b) DI = 2AH.

c) AC vuông góc với AD.

Trả lời:

verified Giải bởi Vietjack

Cho hình bình hành ABCD có góc A = 120 độ. Tia phân giác của góc D qua (ảnh 1)

a) Hình bình hành ABCD có \(\widehat {BAD},\,\widehat {ADC}\) ở vị trí trong cùng phía.

Suy ra \(\widehat {ADC} = 180^\circ - \widehat {BAD} = 60^\circ \).

Khi đó \(\widehat {ADI} = \widehat {IDC} = \frac{{\widehat {ADC}}}{2} = 30^\circ \) (do DI là tia phân giác của \(\widehat {ADC}\)).

\(\widehat {AID} = \widehat {IDC}\) (cặp góc so le trong).

Vì vậy \(\widehat {AID} = \widehat {ADI}\).

Suy ra tam giác ADI cân tại A.

Do đó AD = AI.

Mà AB = 2AI (I là trung điểm của AB).

Vậy AB = 2AD (điều phải chứng minh).

b) Gọi J là trung điểm của DI.

Tam giác ADI có AJ là đường trung tuyến.

Suy ra AJ vừa là đường phân giác, vừa là đường cao của tam giác ADI.

Khi đó \(\widehat {JAI} = \widehat {DAJ} = \frac{{\widehat {DAI}}}{2} = 60^\circ \).

Xét ∆AJD và ∆DHA, có:

\(\widehat {AJD} = \widehat {DHA} = 90^\circ \);

AD là cạnh chung;

\(\widehat {DAJ} = \widehat {ADH} = 60^\circ \).

Do đó ∆AJD = ∆DHA (cạnh huyền – góc nhọn).

Suy ra DJ = AH (cặp cạnh tương ứng).

Mà DI = 2DJ (J là trung điểm của DI).

Vậy DI = 2AH (điều phải chứng minh).

c) Ta có BI = BC \(\left( { = \frac{1}{2}AB} \right)\).

Suy ra tam giác IBC cân tại B.

\(\widehat {IBC} = \widehat {ADC} = 60^\circ \).

Do đó tam giác IBC đều.

Vì vậy IC = IB = IA.

Khi đó tam giác ABC vuông tại C hay \(\widehat {ACB} = 90^\circ \).

Suy ra \(\widehat {DAC} = \widehat {ACB} = 90^\circ \).

Vậy AD AC (điều phải chứng minh).

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho (O; R), đường kính AB và một điểm M nằm trên (O; R) với MA < MB (M khác A và B). Tiếp tuyến tại M của (O; R) cắt tiếp tuyến tại A, B của (O; R) lần lượt tại C và D.

a) Chứng minh rằng ABDC là hình thang vuông.

b) AD cắt (O; R) tại E, OD cắt MB tại N. Chứng minh rằng OD vuông góc với MB và DE.DA = DN.DO.

c) Đường thẳng vuông góc với AB tại O cắt đường thẳng AM tại F. Chứng tỏ OFDB là hình chữ nhật.

d) AM = R. Tính diện tích tứ giác ACDB theo R.

Xem đáp án » 30/07/2023 114

Câu 2:

Cho hình chữ nhật ABCD có AB = 4 cm, BC = 3 cm. Kẻ BH vuông góc với AC tại H, tia BH cắt AD ở E.

1) Tính AC, BH, \(\widehat {BAC}\).

2) Chứng minh BH.BE = CD2.

3) Kẻ EF vuông góc với BC tại F. Chứng minh .

4) Tính diện tích tam giác BHF.

Xem đáp án » 30/07/2023 110

Câu 3:

Mẹ hơn con 30 tuổi, tuổi mẹ gấp 6 lần tuổi con. Hỏi tuổi của mỗi người?

Xem đáp án » 30/07/2023 109

Câu 4:

Cho \(\cos a = \frac{4}{5}\) và 0° < a < 90°. Tính sina, tana, cota.

Xem đáp án » 30/07/2023 88

Câu 5:

Tìm tất cả các nghiệm nguyên dương của phương trình 6x2 + 5y2 = 74.

Xem đáp án » 30/07/2023 83

Câu 6:

Cho tam giác ABC đều cạnh bằng a, M là điểm di động trên đường thẳng AC. Tìm giá trị nhỏ nhất của biểu thức \(T = \left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| + 3\left| {\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} } \right|\).

Xem đáp án » 30/07/2023 83

Câu 7:

Cho tam giác ABC vuông tại A, AB = 3 và AC = 4. Gọi I là tâm đường tròn nội tiếp của tam giác ABC. Chứng minh rằng \(5\overrightarrow {IA} + 4\overrightarrow {IB} + 3\overrightarrow {IC} = \vec 0\).

Xem đáp án » 30/07/2023 78

Câu 8:

Có bao nhiêu số tự nhiên có 5 chữ số khác nhau, biết rằng có đúng 3 chữ số chẵn và 2 chữ số lẻ còn lại đứng kề nhau?

Xem đáp án » 30/07/2023 77

Câu 9:

Với các số 0, 1, 3, 6, 9, có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau và không chia hết cho 3.

Xem đáp án » 30/07/2023 77

Câu 10:

Cho x, y, z là các số thực dương thỏa mãn x + y + z = xyz. Tìm giá trị lớn nhất của biểu thức \(P = \frac{1}{{\sqrt {1 + {x^2}} }} + \frac{1}{{\sqrt {1 + {y^2}} }} + \frac{1}{{\sqrt {1 + {z^2}} }}\).

Xem đáp án » 30/07/2023 75

Câu 11:

Tìm số tự nhiên x có 3 chữ số, biết rằng nếu viết thêm chữ số 9 vào bên trái số đó ta được một số gấp 26 lần số ban đầu.

Xem đáp án » 30/07/2023 74

Câu 12:

Cho đường thẳng d: y = –4x + 3.

a) Vẽ đồ thị hàm số.

b) Tìm tọa độ giao điểm A, B của d với lần lượt hai trục tọa độ Ox và Oy.

c) Tính khoảng cách từ gốc tọa độ đến d.

d) Tính diện tích tam giác OAB.

Xem đáp án » 30/07/2023 73

Câu 13:

Tìm các số nguyên x để giá trị của đa thức a(x) = x3 – 2x2 + 3x + 50 chia hết cho giá trị của đa thức b(x) = x + 3.

Xem đáp án » 30/07/2023 71

Câu 14:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi O là giao điểm của AC và BD. Gọi M, N lần lượt là trung điểm của SB, SC. Tính tỉ số thể tích giữa hai khối chóp O.BCNM và S.ABCD.

Xem đáp án » 30/07/2023 69

Câu 15:

Cho đường tròn (O; R) và điểm A cố định nằm ngoài đường tròn. Vẽ đường thẳng d vuông góc với OA tại A. Trên d lấy M. Qua M kẻ tiếp tuyến ME, MF với (O). Nối EF cắt OM tại H, cắt OA tại B.

a) Chứng minh tứ giác ABHM nội tiếp.

b) Chứng minh OA.OB = OH.OM = R2.

c) Chứng minh tâm I của đường tròn nội tiếp tam giác MEF thuộc một đường tròn cố định khi M di chuyển trên d.

d) Tìm vị trí của M để diện tích tam giác HBO lớn nhất.

Xem đáp án » 30/07/2023 67

Câu hỏi mới nhất

Xem thêm »
Xem thêm »