Thứ sáu, 15/11/2024
IMG-LOGO

Câu hỏi:

07/07/2024 51

Xác định số hữu tỉ a sao cho: (x3 + ax2 + 5x + 3) (2x2 + 2x + 3).

Trả lời:

verified Giải bởi Vietjack

Lời giải

Ta thực hiện đặt tính như sau:

 Media VietJack

Để phép chia là phép chia hết thì số dư bằng 0

\( \Leftrightarrow \left\{ \begin{array}{l}6 - 2a = 0\\9 - 3a = 0\end{array} \right. \Leftrightarrow a = 3\).

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có AM là trung tuyến. Gọi I là trung điểm AM và K là một điểm trên cạnh AC sao cho AK = 1/3 AC. Chứng minh ba điểm B, I, K thẳng hàng.

Xem đáp án » 31/07/2023 220

Câu 2:

12 người làm xong một công việc trong 10 ngày hỏi muốn làm xong công việc trong 8 ngày thì cần bao nhiêu người? (mức làm của mỗi người như nhau)

Xem đáp án » 31/07/2023 163

Câu 3:

Cho tam giác ABC vuông ở A, đường cao AH, biết BH = 9 cm, CH = 16 cm. Tính độ dài các cạnh AB, AC và chiều dài AH.

Xem đáp án » 31/07/2023 107

Câu 4:

Một hộp đựng 7 viên bi xanh, 5 viên bi đỏ và 4 viên bi vàng. Có bao nhiêu cách lấy ra 8 viên bi có đủ 3 màu?

Xem đáp án » 31/07/2023 99

Câu 5:

Cho đường tròn (O), đường kính AB cố định, M là 1 điểm thuộc (O), (M khác A và B). Các tiếp tuyến của (O) tại A và M cắt nhau ở C. Đường tròn (I) đi qua M và tiếp xúc với đường thẳng AC tại C, CD là đường kính của (I). Chứng minh rằng:

a) 3 điểm O, M, D thẳng hàng.

b) Tam giác COD là tam giác cân.

c) Gọi N là giao điểm của OC và (I). Chứng minh khi M thay đổi thì đường thẳng qua N vuông góc với AB luôn đi qua điểm cố định.

Xem đáp án » 31/07/2023 93

Câu 6:

Cho một hộp đựng 4 viên bi đỏ, 5 viên bi xanh và 7 viên bi vàng. Lấy ngẫu nhiên một lần ba viên bi. Tính xác suất để trong ba viên bi lấy được chỉ có hai màu.

Xem đáp án » 31/07/2023 89

Câu 7:

Cho tam giác ABC nhọn. Gọi M, N, P lần lượt là trung điểm của AB, AC, BC. Kẻ đường cao AH. Chứng minh rằng tứ giác MNPH là hình thang cân.

Xem đáp án » 31/07/2023 88

Câu 8:

Đố bạn chỉ với 12 que diêm (hay 12 chiếc que có độ dài bằng nhau) mà xếp được thành 6 tam giác đều.

Xem đáp án » 31/07/2023 78

Câu 9:

Cho tam giác ABC nhọn. Gọi M và N lần lượt là trung điểm của AB, BC.

a) Tính độ dài của MN biết AC = 16cm.

b) Gọi I là trung điểm của AC. Chứng minh tứ giác BMIN là hình bình hành.

c) Trên tia đối của tia NM lấy E sao cho N là trung điểm ME. Gọi K là giao điểm của EI và MC. Chứng minh MC = 3KC.

Xem đáp án » 31/07/2023 77

Câu 10:

Cho tam giác ABC vuông cân tại A. Ở phía ngoài tam giác ABC, vẽ tam giác BCD vuông cân tại B. Tứ giác ABCD là hình gì? Vì sao?

Xem đáp án » 31/07/2023 77

Câu 11:

Cho đường tròn (O), đường kính BC = 2R, điểm A nằm ngoài đường tròn sao cho tam giác ABC nhọn. Từ A kẻ 2 tiếp tuyến AM, AN với đường tròn (O). Gọi H là trực tâm của tam giác ABC, F là giao điểm của AH và BC. Chứng minh rằng:

a, 5 điểm A, O, M, N, F cùng nằm trên 1 đường tròn.

b, 3 điểm M, N, H thẳng hàng.

c, HA . HF = R2 – OH2.

Xem đáp án » 31/07/2023 76

Câu 12:

Tìm giá trị của x để đa thức dư trong mỗi phép chia sau có giá trị bằng 0:

a) (3x5 – x4 – 2x3 + x2 + 4x + 5) : (x2 – 2x + 2);

b) (x5 + 2x4 + 3x2 + x – 3) : (x2 + 1).

Xem đáp án » 31/07/2023 76

Câu 13:

Tháng 2 năm nào đó có 5 ngày thứ Năm. Hỏi ngày 1 tháng đó là thứ mấy? Chủ nhật tháng đó vào những ngày nào?

Xem đáp án » 31/07/2023 75

Câu 14:

Cho hai đường thẳng song song d1d2. Trên đường thẳng d1 lấy 10 điểm phân biệt, trên đường thẳng d2 lấy 15 điểm phân biệt. Hỏi có bao nhiêu tam giác tạo thành mà ba đỉnh của nó được chọn từ 25 điểm vừa nói ở trên?

Xem đáp án » 31/07/2023 74

Câu 15:

Tìm x, y, z nguyên dương thỏa mãn: xy + 1 chia hết cho z; yz + 1 chia hết cho x; xz + 1 chia hết cho y.

Xem đáp án » 31/07/2023 74

Câu hỏi mới nhất

Xem thêm »
Xem thêm »