Lời giải
Đáp án đúng là: D
Đặt \[t = \sin x + \cos x = \sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right)\]
ĐK: \( - \sqrt 2 \le t \le \sqrt 2 \)
Ta có: 5sin 2x + sin x + cos x + 6 = 0
Û 5(sin 2x + 1) + sin x + cos x + 1 = 0
Û 5(sin x + cos x)2 + sin x + cos x + 1 = 0
Þ 5t2 + t + 1 = 0
Suy ra không tồn tại giá trị nào của t thỏa mãn hay phương trình đã cho vô nghiệm
Ta nhận thấy trong các đáp án A, B, C, D thì phương trình ở đáp án D vô nghiệm.
Vậy phương trình đã cho tương đương với phương trình 1 + tan2 x = 0.
Chọn đáp án D.
Cho tam giác ABC vuông cân tại A, tia phân giác của góc B và góc C cắt AC và AB lần lượt tại E và D.
a) Chứng minh BE = CD, AD = AE.
b) Gọi I là giao điểm của BE và CD, AI cắt BC tại M. Chứng minh tam giác MAC vuông cân.
c) Từ A và D vẽ các đường thẳng vuông góc với BE. Các đường này cắt BC tại K và H. Chứng minh HK = KC.
Phân tích đa thức sau thành nhân tử:
a) 4x2 + y2 − 4xy
b) 27 + 9x2 + 27x + x3
c) 8z3 + 1
d) (2z − 3)2 − 16
e) (2x − 7)2 − (x + 2)2
Tìm số nguyên dương n sao cho:
\({\log _{2018}}2019 + {2^2}{\log _{\sqrt {2018} }}2019 + {3^2}{\log _{\sqrt[3]{{2018}}}}2019 + ... + {n^2}{\log _{\sqrt[n]{{2018}}}}2019\)
= 10102 . 20212 log 2018 2019
Phân tích các đa thức sau thành nhân tử
a) 4x2 − 4xy + y2
b) 9x3 − 9x2y − 4x + 4y
c) x3 + 2 + 3(x3 − 2)