Cho a; b; c đôi một khác nhau. Tính giá trị biểu thức:
\(P = \frac{{{a^2}}}{{\left( {a - b} \right)\left( {a - c} \right)}} + \frac{{{b^2}}}{{\left( {b - c} \right)\left( {b - a} \right)}} + \frac{{{c^2}}}{{\left( {c - b} \right)\left( {c - a} \right)}}\).
Lời giải
\(P = \frac{{{a^2}}}{{\left( {a - b} \right)\left( {a - c} \right)}} + \frac{{{b^2}}}{{\left( {b - c} \right)\left( {b - a} \right)}} + \frac{{{c^2}}}{{\left( {c - b} \right)\left( {c - a} \right)}}\)
\( = \frac{{{a^2}\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)\left( {b - c} \right)}} - \frac{{{b^2}\left( {a - c} \right)}}{{\left( {b - c} \right)\left( {a - b} \right)\left( {a - c} \right)}} + \frac{{{c^2}\left( {a - b} \right)}}{{\left( {b - c} \right)\left( {a - c} \right)\left( {a - b} \right)}}\)
\( = \frac{{{a^2}\left( {b - c} \right) - {b^2}\left( {a - c} \right) + {c^2}\left( {a - b} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)\left( {b - c} \right)}}\)
\( = \frac{{{a^2}b - {a^2}c - a{b^2} + {b^2}c + a{c^2} - b{c^2}}}{{\left( {a - b} \right)\left( {a - c} \right)\left( {b - c} \right)}}\)
\( = \frac{{{a^2}\left( {b - c} \right) - a\left( {{b^2} - {c^2}} \right) + bc\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)\left( {b - c} \right)}}\)
\( = \frac{{{a^2}\left( {b - c} \right) - a\left( {b - c} \right)\left( {b + c} \right) + bc\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)\left( {b - c} \right)}}\)
\[ = \frac{{\left( {b - c} \right)\left[ {{a^2} - a\left( {b + c} \right) + bc} \right]}}{{\left( {a - b} \right)\left( {a - c} \right)\left( {b - c} \right)}}\]
\[ = \frac{{{a^2} - ab - ac + bc}}{{\left( {a - b} \right)\left( {a - c} \right)}}\]
\[ = \frac{{a\left( {a - b} \right) - c\left( {a - b} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)}}\]
\[ = \frac{{\left( {a - b} \right)\left( {a - c} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)}} = 1\]
Cho tam giác ABC vuông cân tại A, tia phân giác của góc B và góc C cắt AC và AB lần lượt tại E và D.
a) Chứng minh BE = CD, AD = AE.
b) Gọi I là giao điểm của BE và CD, AI cắt BC tại M. Chứng minh tam giác MAC vuông cân.
c) Từ A và D vẽ các đường thẳng vuông góc với BE. Các đường này cắt BC tại K và H. Chứng minh HK = KC.
Tìm số nguyên dương n sao cho:
\({\log _{2018}}2019 + {2^2}{\log _{\sqrt {2018} }}2019 + {3^2}{\log _{\sqrt[3]{{2018}}}}2019 + ... + {n^2}{\log _{\sqrt[n]{{2018}}}}2019\)
= 10102 . 20212 log 2018 2019
Phân tích đa thức sau thành nhân tử:
a) 4x2 + y2 − 4xy
b) 27 + 9x2 + 27x + x3
c) 8z3 + 1
d) (2z − 3)2 − 16
e) (2x − 7)2 − (x + 2)2
Phân tích các đa thức sau thành nhân tử
a) 4x2 − 4xy + y2
b) 9x3 − 9x2y − 4x + 4y
c) x3 + 2 + 3(x3 − 2)