Lời giải
ĐKXĐ:
\(\left\{ \begin{array}{l}{x^2} - 7x + 10 \ne 0\\{x^2} - 4 \ne 0\\2 - x \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {x - 2} \right)\left( {x - 5} \right) \ne 0\\\left( {x - 2} \right)\left( {x + 2} \right) \ne 0\\x - 2 \ne 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x \ne 2;\;x \ne 5\\x \ne 2;\;x \ne - 2\\x \ne 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 2\\x \ne - 2\\x \ne 5\end{array} \right.\)
Vậy x Î (–¥; −2) È (−2; 2) È (2; 5) È (5; +¥) thì N có giá trị xác định.
Cho tam giác ABC vuông cân tại A, tia phân giác của góc B và góc C cắt AC và AB lần lượt tại E và D.
a) Chứng minh BE = CD, AD = AE.
b) Gọi I là giao điểm của BE và CD, AI cắt BC tại M. Chứng minh tam giác MAC vuông cân.
c) Từ A và D vẽ các đường thẳng vuông góc với BE. Các đường này cắt BC tại K và H. Chứng minh HK = KC.
Phân tích đa thức sau thành nhân tử:
a) 4x2 + y2 − 4xy
b) 27 + 9x2 + 27x + x3
c) 8z3 + 1
d) (2z − 3)2 − 16
e) (2x − 7)2 − (x + 2)2
Tìm số nguyên dương n sao cho:
\({\log _{2018}}2019 + {2^2}{\log _{\sqrt {2018} }}2019 + {3^2}{\log _{\sqrt[3]{{2018}}}}2019 + ... + {n^2}{\log _{\sqrt[n]{{2018}}}}2019\)
= 10102 . 20212 log 2018 2019
Phân tích các đa thức sau thành nhân tử
a) 4x2 − 4xy + y2
b) 9x3 − 9x2y − 4x + 4y
c) x3 + 2 + 3(x3 − 2)