Cho a, b, c thỏa mãn điều kiện a.b.c = 2005. Chứng minh rằng biểu thức sau không phụ thuộc a, b, c:
\(A = \frac{{2005a}}{{ab + 2005a + 2005}} + \frac{{2005b}}{{bc + 2005b + 2005}} + \frac{c}{{ac + c + 1}}\)
Lời giải
\(A = \frac{{2005a}}{{ab + 2005a + 2005}} + \frac{{2005b}}{{bc + 2005b + 2005}} + \frac{c}{{ac + c + 1}}\)
\( = \frac{{{a^2}bc}}{{ab + {a^2}bc + abc}} + \frac{b}{{bc + b + abc}} + \frac{c}{{ac + c + 1}}\)
\( = \frac{{{a^2}bc}}{{ab\left( {1 + ac + c} \right)}} + \frac{b}{{b\left( {c + 1 + ac} \right)}} + \frac{c}{{ac + c + 1}}\)
\( = \frac{{ac}}{{ac + c + 1}} + \frac{1}{{ac + c + 1}} + \frac{c}{{ac + c + 1}}\)
\( = \frac{{ac + c + 1}}{{ac + c + 1}} = 1\).
Vậy biểu thức A không phụ thuộc a, b, c.Cho tam giác ABC vuông cân tại A, tia phân giác của góc B và góc C cắt AC và AB lần lượt tại E và D.
a) Chứng minh BE = CD, AD = AE.
b) Gọi I là giao điểm của BE và CD, AI cắt BC tại M. Chứng minh tam giác MAC vuông cân.
c) Từ A và D vẽ các đường thẳng vuông góc với BE. Các đường này cắt BC tại K và H. Chứng minh HK = KC.
Tìm số nguyên dương n sao cho:
\({\log _{2018}}2019 + {2^2}{\log _{\sqrt {2018} }}2019 + {3^2}{\log _{\sqrt[3]{{2018}}}}2019 + ... + {n^2}{\log _{\sqrt[n]{{2018}}}}2019\)
= 10102 . 20212 log 2018 2019
Phân tích đa thức sau thành nhân tử:
a) 4x2 + y2 − 4xy
b) 27 + 9x2 + 27x + x3
c) 8z3 + 1
d) (2z − 3)2 − 16
e) (2x − 7)2 − (x + 2)2
Phân tích các đa thức sau thành nhân tử
a) 4x2 − 4xy + y2
b) 9x3 − 9x2y − 4x + 4y
c) x3 + 2 + 3(x3 − 2)