Cho hình bình hành ABCD. Lấy điểm E trên cạnh AB, điểm F trên cạnh CD sao cho AE = CF. Chứng minh rằng ba đường thẳng AC, BD, EF đồng quy.
Vì ABCD là hình bình hành nên AB // CD, hay AE // CF
Mà AE = CF (giả thiết)
Suy ra AECF là hình bình hành
Do đó hai đường chéo AC và EF cắt nhau tại trung điểm của mỗi đường
Gọi O là giao điểm của AC và AF (1)
Vì ABCD là hình bình hành
Nên hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường
Mà O là trung điểm AC
Suy ra O là trung điểm của BD và AC (2)
Từ (1) và (2) suy ra ba đường thẳng AC, BD, EF đồng quy
Vậy ba đường thẳng AC, BD, EF đồng quy.
Tìm tất cả các giá trị thực của tham số m để phương trình x3 – 3mx + 2 = 0 có nghiệm duy nhất
Một cấp số cộng gồm 5 số hạng. Hiệu số hạng đầu và số hạng cuối bằng 20. Tìm công sai d của cấp số cộng đã cho
b) Tìm m để đồ thị hàm số (Cm) có các điểm cực đại và cực tiểu nằm về hai phía của trục tung.
Cho phương trình (với abc ≠ 0 và bc + ac + ab ≠ 0). Trong các kết luận sau, kết luận đúng là:
d) Xác định vị trí của điểm C trên nửa đường tròn đường kính AB để đoạn thẳng MN có độ dài lớn nhất.
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; –1; 3) và hai đường thẳng . Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d2.
Cho tam giác ABC nhọn. Gọi M, N, P lần lượt là trung điểm của AB, AC, BC. Kẻ đường cao AH. Chứng minh rằng tứ giác MNPH là hình thang cân.