Cho hàm số y = x3 – 3x2 – 3x – 2 có đồ thị (C). Viết phương trình tiếp tuyến của đồ thị (C) tại giao điểm của (C) với trục tung.
Gọi A là giao điểm của đồ thị (C) và trục tung
Suy ra xA = 0, yA = 03 – 3 . 02 – 3 . 0 – 2 = – 2
Do đó A(0; – 2)
Ta có: y’ = 3x2 – 6x – 3
y’ (0) = – 3
Phương trình tiếp tuyến của (C) tại điểm A(0; – 2) là
y = y’(0)(x – 0) – 3 = – 3x – 2
Vậy phương trình tiếp tuyến của đồ thị (C) tại giao điểm của (C) với trục tung là y = – 3x – 2.
Tìm tất cả các giá trị thực của tham số m để phương trình x3 – 3mx + 2 = 0 có nghiệm duy nhất
Một cấp số cộng gồm 5 số hạng. Hiệu số hạng đầu và số hạng cuối bằng 20. Tìm công sai d của cấp số cộng đã cho
b) Tìm m để đồ thị hàm số (Cm) có các điểm cực đại và cực tiểu nằm về hai phía của trục tung.
Cho phương trình (với abc ≠ 0 và bc + ac + ab ≠ 0). Trong các kết luận sau, kết luận đúng là:
d) Xác định vị trí của điểm C trên nửa đường tròn đường kính AB để đoạn thẳng MN có độ dài lớn nhất.
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; –1; 3) và hai đường thẳng . Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d2.
Cho tam giác ABC nhọn. Gọi M, N, P lần lượt là trung điểm của AB, AC, BC. Kẻ đường cao AH. Chứng minh rằng tứ giác MNPH là hình thang cân.