Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy, góc giữa SA và mặt phẳng (SBC) bằng 45° (tham khảo hình bên). Thể tích của khối chóp S.ABC bằng:
A.
B.
C.
D.
Đáp án đúng là: A
Gọi M là trung điểm của BC
Suy ra AM là trung tuyến của tam giác ABC
Do đó
Mà tam giác ABC đều nên AM ⊥ BC
Mà SA ⊥ BC nên BC ⊥ (SAM)
Suy ra (SBC) ⊥ (SAM)
Ta có SA ⊥ (ABC)
Suy ra (SAM) ⊥ (ABC)
Do đó góc giữa (SBC) và (ABC) là
Xét tam giác SAM vuông tại A có
Nên tam giác SAM vuông cân tại A
Suy ra
Ta có: .
Vậy ta chọn đáp án A.
Tìm tất cả các giá trị thực của tham số m để phương trình x3 – 3mx + 2 = 0 có nghiệm duy nhất
Một cấp số cộng gồm 5 số hạng. Hiệu số hạng đầu và số hạng cuối bằng 20. Tìm công sai d của cấp số cộng đã cho
b) Tìm m để đồ thị hàm số (Cm) có các điểm cực đại và cực tiểu nằm về hai phía của trục tung.
Cho phương trình (với abc ≠ 0 và bc + ac + ab ≠ 0). Trong các kết luận sau, kết luận đúng là:
d) Xác định vị trí của điểm C trên nửa đường tròn đường kính AB để đoạn thẳng MN có độ dài lớn nhất.
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; –1; 3) và hai đường thẳng . Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d2.
Cho tam giác ABC nhọn. Gọi M, N, P lần lượt là trung điểm của AB, AC, BC. Kẻ đường cao AH. Chứng minh rằng tứ giác MNPH là hình thang cân.