c) Tam giác AMC cân tại M (chứng minh câu a) nên MA = MC (định nghĩa tam giác cân)
Tam giác BAM là tam giác đều (chứng minh câu b) nên MA = MB (định nghĩa tam giác đều)
Suy ra MB = MC (= MA)
Mà M nằm trên cạnh BC (theo giả thiết)
Do đó M là trung điểm của BC
Vậy M là trung điểm của BC.
Tìm tất cả các giá trị thực của tham số m để phương trình x3 – 3mx + 2 = 0 có nghiệm duy nhất
Một cấp số cộng gồm 5 số hạng. Hiệu số hạng đầu và số hạng cuối bằng 20. Tìm công sai d của cấp số cộng đã cho
b) Tìm m để đồ thị hàm số (Cm) có các điểm cực đại và cực tiểu nằm về hai phía của trục tung.
Cho phương trình (với abc ≠ 0 và bc + ac + ab ≠ 0). Trong các kết luận sau, kết luận đúng là:
d) Xác định vị trí của điểm C trên nửa đường tròn đường kính AB để đoạn thẳng MN có độ dài lớn nhất.
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; –1; 3) và hai đường thẳng . Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d2.
Cho tam giác ABC nhọn. Gọi M, N, P lần lượt là trung điểm của AB, AC, BC. Kẻ đường cao AH. Chứng minh rằng tứ giác MNPH là hình thang cân.