c) Tam giác AMC cân tại M (chứng minh câu a) nên MA = MC (định nghĩa tam giác cân)
Tam giác BAM là tam giác đều (chứng minh câu b) nên MA = MB (định nghĩa tam giác đều)
Suy ra MB = MC (= MA)
Mà M nằm trên cạnh BC (theo giả thiết)
Do đó M là trung điểm của BC
Vậy M là trung điểm của BC.
Tìm tất cả các giá trị thực của tham số m để phương trình x3 – 3mx + 2 = 0 có nghiệm duy nhất
Một cấp số cộng gồm 5 số hạng. Hiệu số hạng đầu và số hạng cuối bằng 20. Tìm công sai d của cấp số cộng đã cho
b) Tìm m để đồ thị hàm số (Cm) có các điểm cực đại và cực tiểu nằm về hai phía của trục tung.
Cho phương trình (với abc ≠ 0 và bc + ac + ab ≠ 0). Trong các kết luận sau, kết luận đúng là:
Một hình thang có đáy nhỏ là 4 cm , chiều cao là 5 cm, diện tích là 40 cm2. Tính chiều dài đáy lớn.
d) Xác định vị trí của điểm C trên nửa đường tròn đường kính AB để đoạn thẳng MN có độ dài lớn nhất.
Cho tam giác ABC nhọn. Gọi M, N, P lần lượt là trung điểm của AB, AC, BC. Kẻ đường cao AH. Chứng minh rằng tứ giác MNPH là hình thang cân.
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; –1; 3) và hai đường thẳng . Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d2.