Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

16/07/2024 69

Trong khôn gian với hệ tọa độ Oxyz, cho các điểm A(2; 0; 0), B(0; 3; 0), C(0; 0; –4). Gọi H là trực tâm tam giác ABC. Tìm phương trình tham số của đường thẳng OH trong các phương án sau:


A. \(\left\{ \begin{array}{l}x = 6t\\y = - 4t\\z = - 3t\end{array} \right.\)



B. \(\left\{ \begin{array}{l}x = 6t\\y = 2 + 4t\\z = - 3t\end{array} \right.\)



C. \(\left\{ \begin{array}{l}x = 6t\\y = 4t\\z = - 3t\end{array} \right.\)


Đáp án chính xác


D. \(\left\{ \begin{array}{l}x = 6t\\y = 4t\\z = 1 - 3t\end{array} \right.\).


Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Vì H là trực tâm của tam giác ABC nên \(\left\{ {\begin{array}{*{20}{l}}{\overrightarrow {AH} .\overrightarrow {BC} = 0}\\{\overrightarrow {BH} .\overrightarrow {AC} = 0}\\{[\overrightarrow {AB} ,\overrightarrow {AC} ].\overrightarrow {AH} = 0}\end{array}} \right.\)

Ta giả sử \(H(x,y,z)\), ta có:

\(\begin{array}{l}\overrightarrow {BC} = (0; - 3; - 4)\\\overrightarrow {AC} = ( - 2;0; - 4)\\\overrightarrow {AH} = (x - 2;y;z)\\\overrightarrow {BH} = (x;y - 3;z)\\\overrightarrow {AB} = ( - 2;3;0)\end{array}\)

\(\overrightarrow {AH} .\overrightarrow {BC} = 0 \Leftrightarrow 3y + 4z = 0\)                     (1)

\(\overrightarrow {BH} \cdot \overrightarrow {AC} = 0 \Leftrightarrow x + 2z = 0\)                   (2)

Ta có: \([\overrightarrow {AB} ,\overrightarrow {AC} ] = ( - 12; - 8;6)\)

Suy ra \[\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] \cdot \overrightarrow {AH} = 0\]

\(\begin{array}{l} \Leftrightarrow - 12(x - 2) - 8y + 6z = 0\\ \Leftrightarrow - 6x - 4y + 3z + 12 = 0\end{array}\)          (3)

Từ (1), (2) và (3) ta có hệ phương trình:

\(\left\{ {\begin{array}{*{20}{l}}{3y + 4z = 0}\\{x + 2z = 0}\\{ - 6x - 4y + 3z + 12 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = \frac{{72}}{{61}}}\\{y = \frac{{48}}{{61}}}\\{z = \frac{{ - 36}}{{61}}}\end{array}} \right.\)

Suy ra \(H\left( {\frac{{72}}{{61}};\frac{{48}}{{61}};\frac{{ - 36}}{{61}}} \right)\)

Do đó \(\overrightarrow {OH} = \left( {\frac{{72}}{{61}};\frac{{48}}{{61}};\frac{{ - 36}}{{61}}} \right)\) là vecto chỉ phương của OH

Chọn \(\vec u = (6,4, - 3)\) là VTCP của OH và OH qua O(0; 0; 0) nên phương trình tham số là \(\left\{ \begin{array}{l}x = 6t\\y = 4t\\z = - 3t\end{array} \right.\)

Vậy đáp án cần chọn là C.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho khối hộp chữ nhật ABCD.A′B′C′D′ có đáy là hình vuông, BD = 2a, góc giữa hai mặt phẳng (A′BD) và (ABCD) bằng 30°. Thể tích của khối hộp chữ nhật đã cho bằng:

Xem đáp án » 20/09/2023 98

Câu 2:

Tập giá trị của hàm số y = cos2x là

Xem đáp án » 20/09/2023 91

Câu 3:

Cho hình thoi ABCD có AC = 8 và BD = 6. Tính \(\overrightarrow {AB} .\overrightarrow {AC} \).

Xem đáp án » 20/09/2023 85

Câu 4:

Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Gọi E, F lần lượt là trung điểm của AB, BC. Đẳng thức nào sau đây sai?

Xem đáp án » 20/09/2023 84

Câu 5:

Cho hàm số y = f(x) có bảng biến thiên như sau:

Số nghiệm thuộc đoạn [0; 2pi] của phương trình f(cosx) = -2 là: A. 3 B. 0 C. 2  D. 1 (ảnh 1)

Số nghiệm thuộc đoạn [0; 2π] của phương trình f(cosx) = –2 là:

Xem đáp án » 20/09/2023 82

Câu 6:

Cho hàm số f(x) có bảng biến thiên như sau:

Số nghiệm thuộc đoạn [-pi; 2pi] của phương trình 2f(sinx) + 3 = 0 là: A. 4 B. 6 C. 3 (ảnh 1)

Số nghiệm thuộc đoạn [–π; 2π] của phương trình 2f(sinx) + 3 = 0 là:

Xem đáp án » 20/09/2023 81

Câu 7:

Cho hai học sinh lớp A, ba học sinh lớp B và bốn học sinh lớp C xếp thành một hàng ngang sao cho giữa hai học sinh lớp A không có học sinh nào lớp B. Hỏi có bao nhiêu cách xếp hàng như vậy?

Xem đáp án » 20/09/2023 81

Câu 8:

Cho tam giác đều ABC cạnh a. Biết rằng tập hợp các điểm M thỏa mãn đẳng thức \(\left| {2\overrightarrow {MA} + 3\overrightarrow {MB} + 4\overrightarrow {MC} } \right| = \left| {\overrightarrow {MB} - \overrightarrow {MA} } \right|\) là đường tròn cố định có bán kính R. Tính bán kính R theo a.

Xem đáp án » 20/09/2023 81

Câu 9:

Giá trị k để cung \(\alpha = \frac{\pi }{2} + k2\pi \) thỏa mãn 10π < α < 11π là:

Xem đáp án » 20/09/2023 71

Câu 10:

Cho tam giác ABC vuông tại A, \(BC = a\sqrt 3 \), M là trung điểm của BC và có \(\overrightarrow {AM} .\overrightarrow {BC} = \frac{{{a^2}}}{2}\). Tính cạnh AB, AC.

Xem đáp án » 20/09/2023 71

Câu 11:

Có bao nhiêu cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài nếu các sách Văn phải xếp kề nhau?

Xem đáp án » 20/09/2023 70

Câu 12:

Biết rằng phương trình \({\left[ {{{\log }_{\frac{1}{3}}}\left( {9{\rm{x}}} \right)} \right]^2} + {\log _3}\frac{{{x^2}}}{{81}} - 7 = 0\) có hai nghiệm phân biệt x1; x2. Tính P = x1x2.

Xem đáp án » 20/09/2023 68

Câu 13:

Cho hai số thực a và b với 1 < a < b. Khẳng định nào dưới đây là đúng?

Xem đáp án » 20/09/2023 66

Câu 14:

Gọi S là tập hợp tất cả các số nguyên dương của tham số m sao cho bất phương trình 4x – m . 2x – m + 15 ≥ 0 có nghiệm đúng với mọi x [1; 2]. Tính số phần tử của S.

Xem đáp án » 20/09/2023 64

Câu 15:

Cho hình nón đỉnh S, góc ở đỉnh bằng 120°, đáy là hình tròn (O; 3R). Cắt hình nón bởi mặt phẳng qua S và tạo với đáy góc 60°. Diện tích thiết diện là:

Xem đáp án » 20/09/2023 63

Câu hỏi mới nhất

Xem thêm »
Xem thêm »