- Đề số 1
- Đề số 2
- Đề số 3
- Đề số 4
- Đề số 5
- Đề số 6
- Đề số 7
- Đề số 8
- Đề số 9
- Đề số 10
- Đề số 11
- Đề số 12
- Đề số 13
- Đề số 14
- Đề số 15
- Đề số 16
- Đề số 17
- Đề số 18
- Đề số 19
- Đề số 20
- Đề số 21
- Đề số 22
- Đề số 23
- Đề số 24
- Đề số 25
- Đề số 26
- Đề số 27
- Đề số 28
- Đề số 29
- Đề số 30
- Đề số 31
- Đề số 32
- Đề số 33
- Đề số 34
- Đề số 35
- Đề số 36
- Đề số 37
- Đề số 38
- Đề số 39
- Đề số 40
- Đề số 41
- Đề số 42
- Đề số 43
- Đề số 44
- Đề số 45
- Đề số 46
- Đề số 47
- Đề số 48
- Đề số 49
- Đề số 50
- Đề số 51
- Đề số 52
- Đề số 53
- Đề số 54
- Đề số 55
- Đề số 56
- Đề số 57
- Đề số 58
- Đề số 59
- Đề số 60
- Đề số 61
- Đề số 62
- Đề số 63
- Đề số 64
- Đề số 65
- Đề số 66
- Đề số 67
- Đề số 68
- Đề số 69
- Đề số 70
- Đề số 71
- Đề số 72
- Đề số 73
- Đề số 74
- Đề số 75
- Đề số 76
- Đề số 77
- Đề số 78
- Đề số 79
- Đề số 80
- Đề số 81
- Đề số 82
- Đề số 83
- Đề số 84
- Đề số 85
- Đề số 86
- Đề số 87
- Đề số 88
- Đề số 89
- Đề số 90
- Đề số 91
- Đề số 92
- Đề số 93
- Đề số 94
- Đề số 95
- Đề số 96
- Đề số 97
Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án (Phần 73)
-
10156 lượt thi
-
47 câu hỏi
-
60 phút
Danh sách câu hỏi
Câu 1:
Trong khôn gian với hệ tọa độ Oxyz, cho các điểm A(2; 0; 0), B(0; 3; 0), C(0; 0; –4). Gọi H là trực tâm tam giác ABC. Tìm phương trình tham số của đường thẳng OH trong các phương án sau:
Đáp án đúng là: C
Vì H là trực tâm của tam giác ABC nên \(\left\{ {\begin{array}{*{20}{l}}{\overrightarrow {AH} .\overrightarrow {BC} = 0}\\{\overrightarrow {BH} .\overrightarrow {AC} = 0}\\{[\overrightarrow {AB} ,\overrightarrow {AC} ].\overrightarrow {AH} = 0}\end{array}} \right.\)
Ta giả sử \(H(x,y,z)\), ta có:
\(\begin{array}{l}\overrightarrow {BC} = (0; - 3; - 4)\\\overrightarrow {AC} = ( - 2;0; - 4)\\\overrightarrow {AH} = (x - 2;y;z)\\\overrightarrow {BH} = (x;y - 3;z)\\\overrightarrow {AB} = ( - 2;3;0)\end{array}\)
Vì \(\overrightarrow {AH} .\overrightarrow {BC} = 0 \Leftrightarrow 3y + 4z = 0\) (1)
Vì \(\overrightarrow {BH} \cdot \overrightarrow {AC} = 0 \Leftrightarrow x + 2z = 0\) (2)
Ta có: \([\overrightarrow {AB} ,\overrightarrow {AC} ] = ( - 12; - 8;6)\)
Suy ra \[\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] \cdot \overrightarrow {AH} = 0\]
\(\begin{array}{l} \Leftrightarrow - 12(x - 2) - 8y + 6z = 0\\ \Leftrightarrow - 6x - 4y + 3z + 12 = 0\end{array}\) (3)
Từ (1), (2) và (3) ta có hệ phương trình:
\(\left\{ {\begin{array}{*{20}{l}}{3y + 4z = 0}\\{x + 2z = 0}\\{ - 6x - 4y + 3z + 12 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = \frac{{72}}{{61}}}\\{y = \frac{{48}}{{61}}}\\{z = \frac{{ - 36}}{{61}}}\end{array}} \right.\)
Suy ra \(H\left( {\frac{{72}}{{61}};\frac{{48}}{{61}};\frac{{ - 36}}{{61}}} \right)\)
Do đó \(\overrightarrow {OH} = \left( {\frac{{72}}{{61}};\frac{{48}}{{61}};\frac{{ - 36}}{{61}}} \right)\) là vecto chỉ phương của OH
Chọn \(\vec u = (6,4, - 3)\) là VTCP của OH và OH qua O(0; 0; 0) nên phương trình tham số là \(\left\{ \begin{array}{l}x = 6t\\y = 4t\\z = - 3t\end{array} \right.\)
Vậy đáp án cần chọn là C.
Câu 2:
Từ các số 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên chẵn gồm 5 chữ số đôi một khác nhau, đồng thời chia hết cho 9.
Ta thấy tổng 5 chữ số nhỏ nhất là 1 + 2 + 3 + 4 + 5 = 15
Tổng 5 chữ số lớn nhất là 3 + 4 + 5 + 6 + 7 =25
Do đó tổng của 5 chữ số luôn nằm nữa 15 và 25. Do đó tổng đó chia hết cho 9 nên nó chỉ có thể là 18
Mặt khác tổng của 7 chữ số là 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28
Để có được tổng 18 ta cần loại đi 2 chữ số có tổng bằng 28 – 18 = 10
Do đó có các trường hợp: loại cặp 3; 7 còn 5 số 1; 2 ; 4; 5; 6 hoặc loại cặp 4; 6 còn 5 số 1; 2; 3; 5; 7
Số số thỏa mãn là: 3 . 4! + 1 . 4! = 96 số
Vậy ta lập được 96 số.
Câu 3:
Bất phương trình nào sau đây tương đương với bất phương trình x + 5 > 0?
Đáp án đúng là: C
Bất phương trình \({\rm{x}} + 5 > 0 \Leftrightarrow {\rm{x}} > - 5\)
Bất phương trình \({({\rm{x}} - 1)^2}({\rm{x}} + 5) > 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne 1\\x > - 5\end{array} \right.\) nên phương án A sai
Bất phương trình \({x^2}(x + 5) > 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \ne 0}\\{x > - 5}\end{array}} \right.\) nên phương án B sai
Bất phương trình \(\sqrt {{\rm{x}} + 5} ({\rm{x}} + 5) > 0 \Leftrightarrow {\rm{x}} > - 5\) nên phương án \({\rm{C}}\)đúng
Bất phương trình \(\sqrt {x + 5} \left( {x - 5} \right) > 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x + 5 > 0}\\{x - 5 > 0}\end{array} \Leftrightarrow x > 5} \right.\) nên phương án D sai
Vậy đáp án cần chọn là C.
Câu 4:
Cho hàm số f(x) có bảng biến thiên như sau:
Số nghiệm thuộc đoạn [–π; 2π] của phương trình 2f(sinx) + 3 = 0 là:
Đáp án đúng là: B
Phương trình \(2f(\sin x) + 3 = 0 \Leftrightarrow f(\sin x) = - \frac{3}{2}\quad (*)\) có nghiệm trên [–π; 2π]
⇔ Đường thẳng \(y = - \frac{3}{2}\) cắt đồ thị hàm số \(y = f(\sin x)\) tại các điểm trên [–π; 2π]
Đặt \(\sin x = t \Rightarrow x \in [ - \pi ;2\pi ] \Rightarrow t \in [ - 1;1]\)
Ta có bảng biến thiên:
Dựa vào bảng biến thiên ta có: đường thẳng \(y = - \frac{3}{2}\) cắt đồ thị hàm số y = f(t) tại hai điểm phân biệt
Ta có \((*) \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\sin x = {t_1} \in (0;1)}\\{\sin x = {t_2} \in ( - 1;0)}\end{array}} \right.\)
Dựa vào đồ thị hàm số ta thấy:
+) Đường thẳng y = t1 cắt đồ thị hàm số y = sinx tại hai điểm phân biệt trong [–π; 2π]
+) Đường thẳng y = t1 cắt đồ thị hàm số y = sinx tại bốn điểm phân biệt trong [–π; 2π]
Như vậy đường thẳng \(y = - \frac{3}{2}\) cắt đồ thị hàm số \(y = f(\sin x)\) tại 6 điểm phân biệt trên [–π; 2π]
Suy ra phương trình đã cho có 6 nghiệm phân biệt
Vậy đáp án cần chọn là B.
Câu 5:
Cho biết \(\tan \alpha = \frac{2}{3}\). Tính giá trị biểu thức \(M = \frac{{{{\sin }^3}\alpha + 3c{\rm{o}}{{\rm{s}}^3}\alpha }}{{27{{\sin }^3}\alpha - 25co{{\rm{s}}^3}\alpha }}\).
Đáp án đúng là: D
Vì \(\tan \alpha = \frac{2}{3}\) nên cosα ≠ 0
Chia cả từ và mẫu của \({\rm{M}}\) cho cos3α ta được:
\(M = \frac{{{{\sin }^3}\alpha + 3{{\cos }^3}\alpha }}{{27{{\sin }^3}\alpha - 25{{\cos }^3}\alpha }} = \frac{{\frac{{{{\sin }^3}\alpha }}{{{{\cos }^3}\alpha }} + 3\frac{{{{\cos }^3}\alpha }}{{{{\cos }^3}\alpha }}}}{{27\frac{{{{\sin }^3}\alpha }}{{{{\cos }^3}\alpha }} - 25\frac{{{{\cos }^3}\alpha }}{{{{\cos }^3}\alpha }}}} = \frac{{{{\tan }^3}\alpha + 3}}{{27{{\tan }^3}\alpha - 25}}\)
Thay \(\tan \alpha = \frac{2}{3}\) ta được \(M = \frac{{{{\left( {\frac{2}{3}} \right)}^3} + 3}}{{27 \cdot {{\left( {\frac{2}{3}} \right)}^3} - 25}} = \frac{{ - 89}}{{459}}\)
Vậy đáp án cần chọn là D.
Câu 6:
Cho hai tập khác rỗng A = (m – 1; 4]; B = (–2; 2m + 2), m ∈ ℝ. Tìm m để A ∩ B ≠ ∅.
Đáp án đúng là: A
Vì A, B là tập hợp khác rỗng nên \(\left\{ {\begin{array}{*{20}{l}}{m - 1 < 4}\\{2m + 2 > - 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m < 5}\\{m > - 2}\end{array}} \right.} \right. \Leftrightarrow - 2 < m < 5\)
Để \(A \cap B = \emptyset \Leftrightarrow 2m + 2 \le m - 1 \Leftrightarrow m \le - 3\) (không thỏa điều kiện –2 < m < 5)
Do đó không có giá trị nào của m để A ∩ B = ∅
Vậy với mọi \(m \in ( - 2;5)\) thì A ∩ B ≠ ∅
Phương án B sai vì học sinh không tìm điều kiện
Phương án C sai vì học sinh giải sai \(m - 1 > - 2 \Leftrightarrow m > - 1\) và kết hợp với điều kiện
Phương án D sai vì học sinh giải sai \(4 < 2m + 2 \Leftrightarrow m > 1\). Kết hợp với điều kiện
Vậy đáp án cần chọn là A.
Câu 7:
Cho hai đường thẳng d và d’ song song có bao nhiêu phép tịnh tiến biến đường thẳng d thành đường thẳng d’:
Đáp án đúng là: D
Lấy 1 điểm A bất kì thuộc d và 1 điểm B bất kì nằm trên đường thẳng d’
Khi đó, tịnh tiến theo \(\overrightarrow {AB} \) biến đường thẳng d thành d’
Vì A; B là bất kì nên có vô số phép tịnh tiến thỏa mãn
Vậy ta chọn đáp án D.
Câu 8:
Cho \(\widehat {xOy} = 30^\circ \). Gọi A và B là hai điểm di động lần lượt trên Ox và Oy sao cho AB = 1. Độ dài lớn nhất của đoạn OB bằng:
Đáp án đúng là: D
Theo định lí hàm sin trong tam giác OAB, ta có:
\(\frac{{OB}}{{\sin \widehat {OAB}}} = \frac{{AB}}{{\sin \widehat {AOB}}} \Leftrightarrow OB = \frac{{AB}}{{\sin \widehat {AOB}}}.\sin \widehat {OAB} = \frac{1}{{\sin 30^\circ }}.\sin \widehat {OAB} = 2\sin \widehat {OAB}\)
Do đó, độ dài OB lớn nhất khi và chỉ khi \(\sin \widehat {OAB} = 1 \Leftrightarrow \widehat {OAB} = 90^\circ \)
Khi đó \(OB = 2\sin 90^\circ = 2\)
Vậy đáp án cần chọn là D.
Câu 9:
Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Gọi E, F lần lượt là trung điểm của AB, BC. Đẳng thức nào sau đây sai?
Đáp án đúng là: D
Vì ABCD là hình bình hành có O là giao điểm của hai đường chéo nên O là trung điểm của AC, BD
Xét tam giác BCD có O, F là trung điểm của BD, BC
Suy ra OF là đường trung bình
Do đó OF // CD và \(OF = \frac{1}{2}C{\rm{D}}\)
Xét tam giác BAD có O, E là trung điểm của BD, BA
Suy ra OE là đường trung bình
Do đó OE // AD và \(OE = \frac{1}{2}{\rm{AD}}\)
Ta có \(\left\{ \begin{array}{l}AB\,{\rm{//}}\,C{\rm{D}}\\OF\,{\rm{//}}\,C{\rm{D}}\end{array} \right. \Rightarrow AB\,{\rm{//}}\,{\rm{OF}}\)
\(\left\{ \begin{array}{l}AD\,{\rm{//}}\,CB\\OE\,{\rm{//}}\,A{\rm{D}}\end{array} \right. \Rightarrow CB\,{\rm{//}}\,{\rm{OE}}\)
Suy ra BEOF là hình bình hành
Do đó \(\overrightarrow {BE} + \overrightarrow {BF} = \overrightarrow {BO} \)\( \Leftrightarrow \overrightarrow {BE} + \overrightarrow {BF} - \overrightarrow {DO} = \overrightarrow {BO} - \overrightarrow {DO} = \overrightarrow {OD} - \overrightarrow {OB} = \overrightarrow {B{\rm{D}}} \)
Suy ra khẳng định D là sai
Vậy ta chọn đáp án D.
Câu 10:
Cho hình lăng trụ đứng ABC. A’B’C’ có đáy ABC là tam giác vuông tại B, \(\widehat {ACB} = 60^\circ \), cạnh BC = a, đường chéo A’B tạo với mặt phẳng (ABC) một góc 30°. Thể tích khối lăng trụ đứng ABC. A’B’C’ là:
Đáp án đúng là: A
Vì \(AA' \bot (ABC)\) nên AB là hình chiếu vuông góc của A’B lên (ABC)
\(\widehat {\left( {A'B;\left( {ABC} \right)} \right)} = \left( {\widehat {A'B;AB}} \right) = \widehat {A'BA} = 30^\circ \)
Xét tam giác ABC vuông tại B có: \(AB = BC.\tan 60^\circ = a\sqrt 3 \)
Ta có AA’ ⊥ (ABC) ⊃ AB suy ra AA’ ⊥ AB
Do đó tam giác ABA’ vuông tại A
Suy ra \[{\rm{AA}}' = AB.\tan \widehat {A'BA} = a\sqrt 3 .\tan 30^\circ = a\sqrt 3 .\frac{1}{{\sqrt 3 }} = a\]
Diện tích tam giác ABC là \[{S_{ABC}} = \frac{1}{2}.AB.BC = \frac{1}{2}a\sqrt 3 .a = \frac{{{a^2}\sqrt 3 }}{2}\]
Thể tích khối lăng trụ đứng ABC. A’B’C’ là: \(V = AA'.{S_{ABC}} = a.\frac{{{a^2}\sqrt 3 }}{2} = \frac{{{a^3}\sqrt 3 }}{2}\)
Vậy đáp án cần chọn là A.
Câu 11:
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Có bao nhiêu vectơ khác \(\overrightarrow 0 \) cùng phương với \(\overrightarrow {MN} \)có điểm đầu và điểm cuối lấy trong các điểm đã cho.
Đáp án đúng là: C
Các vectơ khác \(\overrightarrow 0 \) cùng phương với \(\overrightarrow {MN} \) là: \(\overrightarrow {NM} ,\overrightarrow {AB} ,\overrightarrow {BA} ,\overrightarrow {AP} ,\overrightarrow {PA} ,\overrightarrow {BP} ,\overrightarrow {PB} \)
Vậy ta chọn đáp án C.
Câu 12:
Cho hai học sinh lớp A, ba học sinh lớp B và bốn học sinh lớp C xếp thành một hàng ngang sao cho giữa hai học sinh lớp A không có học sinh nào lớp B. Hỏi có bao nhiêu cách xếp hàng như vậy?
Đáp án đúng là: C
Xét các trường hợp sau:
TH1: Hai học sinh lớp A đứng cạnh nhau có 2 ! . 8! cách
TH2: Giữa hai học sinh lớp A có một học sinh lớp C có \(2!.A_4^1.7!\) cách
TH3: Giữa hai học sinh lớp A có hai học sinh lớp C có \(2!.A_4^2.6!\) cách
TH4: Giữa hai học sinh lớp A có ba học sinh lớp C có \(2!.A_4^3.5!\) cách
TH5: Giữa hai học sinh lớp \({\rm{A}}\) có bốn học sinh lớp C có \(2!.A_4^4.4!\) cách
Vậy theo quy tắc cộng có \(2!\left( {8! + A_4^17! + A_4^26! + A_4^35! + A_4^44!} \right) = 145152{\rm{ }}\)cách
Vậy đáp án cần chọn là C.
Câu 13:
Khẳng định nào sau đây sai? Hai vectơ bằng nhau thì
Đáp án đúng là: C
Hai vectơ bằng nhau thì có độ dài bằng nhau và cùng hướng, do đó chúng sẽ cùng phương.
Do đó, khẳng định C sai
Câu 14:
Kết quả của phép tính 7,118 + 9,52 – 8,7 + 2,21 sau khi làm tròn đến chữ số thập phân thứ hai là:
Đáp án đúng là: D
Ta có: 7,118 + 9,52 – 8,7 + 2,21
= 16,638 – 8,7 + 2,21
= 7,938 + 2,21
= 10,148
Làm tròn 10,148 đến số thập phân thứ hai ta được 10,15
Câu 15:
Có bao nhiêu cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài nếu các sách Văn phải xếp kề nhau?
Đáp án đúng là: C
Bước 1: Coi 5 quyển sách Văn chỉ xếp vào 1 chỗ.
Bước 2: Như vậy ta sẽ xếp 5 quyển sách Văn và 7 quyển sách Toán vào 8 vị trí trên kệ sách.
Bước 3: Số cách xếp 5 quyển sách Văn là 5!
Bước 4: Số cách xếp xếp 5 quyển sách Văn và 7 quyển sách Toán trên kệ sách dài sao cho 5 quyển sách Văn xếp kề nhau là 5! . 8! cách.
Vậy đáp án cần chọn là C.
Câu 16:
Đáp án đúng là: B
Ta có:
\(\begin{array}{l}10\pi < \alpha < 11\pi \Leftrightarrow 10\pi < \frac{\pi }{2} + k2\pi < 11\pi \\ \Leftrightarrow \frac{{19\pi }}{2} < k2\pi < \frac{{21\pi }}{2} \Leftrightarrow \frac{{19}}{4} < k < \frac{{21}}{4}\\ \Leftrightarrow k = 5\end{array}\)
Vậy đáp án cần chọn là B.
Câu 17:
Trong không gian Oxyz, cho điểm A(2; 1; 3) và đường thẳng d: \(\frac{{x + 1}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z - 2}}{2}\). Đường thẳng đi qua A, vuông góc với d và cắt trục Oy có phương trình là:
Đáp án đúng là: A
Gọi ∆ là đường thẳng cần tìm.
Gọi \(B = \Delta \cap Oy \Rightarrow B(0;t;0)\)
Ta có: (d) vuông góc với ∆ nên ta có:
\(\begin{array}{l}\overrightarrow {{u_d}} .\overrightarrow {AB} = 0 \Leftrightarrow (1; - 2;2).( - 2;t - 1; - 3) = 0\\ \Leftrightarrow - 2 - 2t + 2 - 6 = 0 \Leftrightarrow t = - 3\end{array}\)
Nên \(B(0; - 3;0);A(2;1;3)\)
Suy ra \(\overrightarrow {AB} = ( - 2; - 4; - 3)\)
Phương trình đường thẳng cần tìm có 1 vtcp là (2; 4; 3) và đi qua điểm B(0; –3; 0) dạng: \(\left\{ \begin{array}{l}x = 2t\\y = - 3 + 4t\\z = 3t\end{array} \right.\)
Vậy đáp án cần chọn là A.
Câu 18:
Tập giá trị của hàm số y = cos2x là
Đáp án đúng là B
Vì với mọi x ∈ ℝ ta có –1 ≤ cos2x ≤ 1 nên tập giá trị của hàm số y = cos2x là [–1; 1]
Vậy ta chọn đáp án B.
Câu 19:
Trong mặt phẳng tọa độ Oxy cho ba điểm A(0; 3), B(2; –1), C(–1; 5). Tìm giá trị của k để phép vị tự tâm A tỉ số k biến B thành C.
Ta có:
\(\begin{array}{l}\overrightarrow {AB} = \left( {2; - 4} \right)\\\overrightarrow {AC} = \left( { - 1;2} \right)\end{array}\)
Ta thấy \(\overrightarrow {AC} = - \frac{1}{2}\overrightarrow {AB} \)
Suy ra có phép vị tự tâm A, tỉ số \(\frac{{ - 1}}{2}\) biến điểm B thành điểm C
Vậy \(k = \frac{{ - 1}}{2}\).
Câu 20:
Cho hai đường thẳng a và b song song với nhau. Trên đường thẳng a có 10 điểm phân biệt, trên đường thẳng b có 8 điểm phân biệt. Hỏi từ các điểm đã cho lập được bao nhiêu tam giác?
Đáp án đúng là: A
+ Trường hợp 1: Tam giác đươc tạo ra có 2 điểm thuộc đường thẳng a và 1 điểm thuộc đường thẳng b
Có: 10 . 9 = 90 cách chọn 2 điểm thuộc đường thẳng a
Và có 8 cách chọn 1 điểm thuộc đường thẳng b
Trong trường hợp này có: 90 . 8 = 720 cách
+ Trường hợp 2: Tam giác được tạo thành có 1 điểm thuộc a và 2 điểm thuộc đường thẳng b
Có 10 cách chọn 1 điểm thuộc a
Và 8 . 7 = 56 cách chọn 2 điểm thuộc b
Trong trường hợp này có: 10 . 56 = 560 cách
Theo quy tắc cộng có: 720 + 560 = 1280 tam giác
Vậy ta chọn đáp án A.
Câu 21:
Biết rằng phương trình \({\left[ {{{\log }_{\frac{1}{3}}}\left( {9{\rm{x}}} \right)} \right]^2} + {\log _3}\frac{{{x^2}}}{{81}} - 7 = 0\) có hai nghiệm phân biệt x1; x2. Tính P = x1x2.
Đáp án đúng là: A
Điều kiện x > 0. Ta có:
\(\begin{array}{l}{\left[ {{{\log }_{\frac{1}{3}}}(9x)} \right]^2} + {\log _3}\frac{{{x^2}}}{{81}} - 7 = 0\\ \Leftrightarrow {\left( {2 + {{\log }_3}x} \right)^2} + 2{\log _3}x - 4 - 7 = 0\\ \Leftrightarrow \log _3^2x + 6{\log _3}x - 7 = 0\\ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{{\log }_3}x = 1}\\{{{\log }_3}x = - 7}\end{array}} \right.\\ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 3}\\{x = {3^{ - 7}}}\end{array} \Rightarrow P = {3^{ - 6}} = \frac{1}{{{9^3}}}} \right.\end{array}\)
Vậy ta chọn đáp án A.
Câu 22:
Chia số 120 thành bốn phần tỉ lệ với các số 2; 4; 8; 10. Các số đó theo thứ tự tăng dần là:
Đáp án đúng là: D
Giả sử chia số 120 thành bốn phần x, y, z, t tỉ lệ với các số 2; 4; 6; 8
Khi đó ta có \(:\frac{x}{2} = \frac{y}{4} = \frac{z}{8} = \frac{t}{{10}}\) và \(x + y + z + t = 120\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{x}{2} = \frac{y}{4} = \frac{z}{8} = \frac{t}{{10}} = \frac{{x + y + z + t}}{{2 + 4 + 8 + 10}} = \frac{{120}}{{24}} = 5\)
Do đó:
\(\begin{array}{l}\frac{x}{2} = 5 \Rightarrow x = 5.2 = 10\\\frac{y}{4} = 5 \Rightarrow y = 5.4 = 20\\\frac{z}{8} = 5 \Rightarrow z = 5.8 = 40\\\frac{t}{{10}} = 5 \Rightarrow t = 5.10 = 50\end{array}\)
Suy ra các số cần tìm sắp xếp theo thứ tự tăng dần là 10; 20; 40; 50
Vậy ta chọn đáp án D.
Câu 23:
Số tổ hợp chập 9 của 9 phần tử là:
Đáp án đúng là: B
Số tổ hợp chập 9 của 9 phần tử là \(C_9^9\)
Vậy đáp án cần chọn là B.
Câu 24:
Đáp án đúng là: D
Phương trình hoành độ giao điểm của (P) và Ox là: x2 – 4x + m = 0 (1)
Để (P) cắt Ox tại hai điểm phân biệt x1; x2
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\Delta ' > 0}\\{a \ne 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{4 - m > 0}\\{1 \ne 0}\end{array} \Leftrightarrow m < 4} \right.} \right.\)
Giả sử \(A\left( {{x_1};0} \right),B\left( {{x_2};0} \right)\)
Theo định lí Vi – ét có: \({x_1} + {x_2} = 4,{x_1}{x_2} = m\)
Ta có \(OA = 3OB \Leftrightarrow \left| {{x_1}} \right| = 3\left| {{x_2}} \right| \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{x_1} = 3{x_2}}\\{{x_1} = - 3{x_2}}\end{array}} \right.\)
Trường hợp 1: \({x_1} = 3{x_2} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{x_1} = 3}\\{{x_2} = 1}\end{array} \Rightarrow m = 3} \right.\) (thỏa mãn)
Trường hợp 2: \({x_1} = - 3{x_2} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{x_1} = 6}\\{{x_2} = - 2}\end{array} \Rightarrow m = - 12} \right.\) (thỏa mãn)
Vậy \(S = - 12 + 3 = - 9\)
Vậy đáp án cần chọn là D.
Câu 25:
Cho hàm số y = f(x) có bảng biến thiên như sau:
Số nghiệm thuộc đoạn [0; 2π] của phương trình f(cosx) = –2 là:
Đáp án đúng là: A
Nhìn vào đồ thị ta xét phương trình \(f(x) = - 2 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 1}\\{x = - 1}\end{array}} \right.\)
Suy ra:
\(f(\cos x) = - 2 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\cos x = 1}\\{\cos x = - 1}\end{array} \Leftrightarrow x = k\pi \quad (k \in \mathbb{Z})} \right.\)
Đề phương trình có nghiệm thuộc đoạn [0; 2π] thì \(0 \le k\pi \le 2\pi \Leftrightarrow 0 \le k \le 2\)
Mà \(k \in \mathbb{Z} \Rightarrow k \in \{ 0;1;2\} \)
Suy ra phương trình đã cho có 3 nghiệm thuộc khoảng [0; 2π]
Vậy ta chọn đáp án A.
Câu 26:
Hàm số \(y = \frac{{x + 1}}{{x - 2m + 1}}\) xác định trên [0; 1) khi:
Đáp án đúng là: C
Hàm số xác định khi \(x - 2m + 1 \ne 0 \Leftrightarrow x \ne 2m - 1\)
Do đó hàm số \(y = \frac{{x + 1}}{{x - 2m + 1}}\) xác định trên [0; 1) khi:
\(\left[ {\begin{array}{*{20}{l}}{2m - 1 < 0}\\{2m - 1 \ge 1}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m < \frac{1}{2}}\\{m \ge 1}\end{array}} \right.} \right.\)
Vậy đáp án đúng là C.
Câu 27:
Biết \(I = \int\limits_0^4 {x\ln \left( {2{\rm{x}} + 1} \right)d{\rm{x}} = \frac{a}{b}\ln 3 - c} \), trong đó a, b, c là các số nguyên dường và \(\frac{a}{b}\) là phân số tối giản. Tính S = a + b + c.
Đáp án đúng là: B
Đặt \(\left\{ \begin{array}{l}u = \ln \left( {2{\rm{x}} + 1} \right)\\dv = x{\rm{dx}}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \frac{2}{{2{\rm{x}} + 1}}d{\rm{x}}\\v = \frac{{{x^2} - \frac{1}{4}}}{2} = \frac{{\left( {2{\rm{x}} + 1} \right)\left( {2{\rm{x}} - 1} \right)}}{8}\end{array} \right.\)
\( \Rightarrow I = \left. {\left[ {\frac{{4{{\rm{x}}^2} - 1}}{8}\ln \left( {2{\rm{x}} + 1} \right)} \right]} \right|_0^4 - \int\limits_0^4 {\frac{{2{\rm{x}} - 1}}{4}} {\rm{dx}}\)
\( \Rightarrow I = \frac{{63}}{8}\ln 9 = \left. {\frac{{\left( {{x^2} - 4} \right)}}{4}} \right|_0^4 = \frac{{63}}{4}\ln 3 - 3 \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = 63}\\{b = 4}\\{c = 3}\end{array} \Rightarrow S = a + b + c = 70} \right.\)
Vậy ta chọn đáp án C.
Câu 28:
Cho hàm số \(y = \frac{{5{\rm{x}} + 9}}{{x - 1}}\) khẳng định nào sau đây là đúng?
Đáp án đúng là: B
Tập xác định D = ℝ \ {1}
Ta có \(y' = \frac{{ - 14}}{{{{\left( {x - 1} \right)}^2}}} < 0;\forall x \in D\)
Suy ra hàm số nghịch biến trên (–∞; 1) và (1; +∞)
Vậy ta chọn đáp án B.
Câu 29:
Cho hình nón đỉnh S, góc ở đỉnh bằng 120°, đáy là hình tròn (O; 3R). Cắt hình nón bởi mặt phẳng qua S và tạo với đáy góc 60°. Diện tích thiết diện là:
Đáp án đúng là: B
Thiết diện qua trục là tam giác SMN \( \Rightarrow \widehat {MSN} = 120^\circ \Rightarrow \widehat {OSN} = 60^\circ \)
Ta có: \(SO = \frac{{ON}}{{\tan 60^\circ }} = \frac{{3R}}{{\sqrt 3 }} = R\sqrt 3 \)
Vì (SAB) tạo với đáy góc 60°\( \Rightarrow \widehat {SHO} = 60^\circ \)
Ta có: \(OH = \frac{{SO}}{{\tan 60^\circ }} = \frac{{R\sqrt 3 }}{{\sqrt 3 }} = R\)
Vì tam giác SOH vuông tại O nên
\({\rm{S}}{O^2} + O{H^2} = S{H^2} \Leftrightarrow {(R\sqrt 3 )^2} + {R^2} = S{H^2} \Leftrightarrow SH = 2R\)
Vì tam giác BOH vuông tại H nên
\(O{H^2} + H{B^2} = O{B^2} \Leftrightarrow H{B^2} = {(3R)^2} - {R^2} \Leftrightarrow HB = 2R\sqrt 2 \)
\( \Rightarrow AB = 2HB = 4R\sqrt 2 \)
Ta có: \({S_{SAB}} = \frac{1}{2}.SH.AB = \frac{1}{2}.2R.4R\sqrt 2 = 4\sqrt 2 .{R^2}\)
Vậy ta chọn đáp án B.
Câu 30:
Cho hình chữ nhật ABCD có AB = 4 và AD = 3. Thể tích của khối trụ được tạo thành khi quay hình chữ nhật ABCD quanh cạnh AB bằng:
Đáp án đúng là: A
Khi quay hình chữ nhật ABCD quanh cạnh AB ta được khối trụ có chiều cao h = AB = 4, bán kính đáy r = AD = 3
Vậy thể tích khối trụ là V = πr2h = π . 32 . 4 = 36π
Vậy đáp án cần chọn là A.
Câu 31:
Cho hình thang vuông ABCD có đáy lớn AB = 4a, đáy nhỏ CD = 2a, đường cao AD = 3a; I là trung điểm của AD. Khi đó \(\left( {\overrightarrow {IA} + \overrightarrow {IB} } \right).\overrightarrow {I{\rm{D}}} \) bằng:
Đáp án đúng là: B
Do I là trung điểm AD nên \(IA = I{\rm{D}} = \frac{{A{\rm{D}}}}{2} = \frac{{3{\rm{a}}}}{2}\)
Ta có: \(\left( {\overrightarrow {IA} + \overrightarrow {IB} } \right).\overrightarrow {I{\rm{D}}} = \left( {\overrightarrow {IA} + \overrightarrow {IA} + \overrightarrow {AB} } \right).\overrightarrow {I{\rm{D}}} = 2\overrightarrow {IA} .\overrightarrow {I{\rm{D}}} = \frac{{ - 9{{\rm{a}}^2}}}{2}\)
Vậy đáp án cần chọn là B.
Câu 32:
Cho hình thoi ABCD có AC = 8 và BD = 6. Tính \(\overrightarrow {AB} .\overrightarrow {AC} \).
Đáp án đúng là: D
Gọi \(O = AC \cap BD\), giả thiết không cho góc, ta phân tích các vec tơ \(\overrightarrow {AB} ;\overrightarrow {AC} \) theo các vec tơ có giá vuông góc với nhau
Ta có:
\(\overrightarrow {AB} .\overrightarrow {AC} = (\overrightarrow {AO} + \overrightarrow {OB} ).\overrightarrow {AC} = \overrightarrow {AO} .\overrightarrow {AC} + \overrightarrow {OB} .\overrightarrow {AC} = \frac{1}{2}\overrightarrow {AC} .\overrightarrow {AC} + 0 = \frac{1}{2}A{C^2} = 32\)
Vậy đáp án cần chọn là D.
Câu 33:
Cho tam giác ABC vuông tại A, \(BC = a\sqrt 3 \), M là trung điểm của BC và có \(\overrightarrow {AM} .\overrightarrow {BC} = \frac{{{a^2}}}{2}\). Tính cạnh AB, AC.
Đáp án đúng là: A
Ta có: \(\overrightarrow {AM} .\overrightarrow {BC} = \frac{{{a^2}}}{2}\)
\(\begin{array}{l} \Leftrightarrow \frac{1}{2}(\overrightarrow {AB} + \overrightarrow {AC} )(\overrightarrow {AC} + \overrightarrow {AB} ) = \frac{{{a^2}}}{2}\\ \Leftrightarrow A{C^2} - A{B^2} = {a^2}\end{array}\)
Mặt khác, tam giác \({\rm{ABC}}\) vuông tại A nên \(A{B^2} + A{C^2} = 3{a^2}\)
Suy ra \(\left\{ {\begin{array}{*{20}{c}}{A{C^2} = 2{a^2}}\\{A{B^2} = {a^2}}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{c}}{AC = a\sqrt 2 }\\{AB = a}\end{array}} \right.} \right.\)
Vậy ta chọn đáp án A.
Câu 34:
Cho tam giác đều ABC cạnh a. Biết rằng tập hợp các điểm M thỏa mãn đẳng thức \(\left| {2\overrightarrow {MA} + 3\overrightarrow {MB} + 4\overrightarrow {MC} } \right| = \left| {\overrightarrow {MB} - \overrightarrow {MA} } \right|\) là đường tròn cố định có bán kính R. Tính bán kính R theo a.
Đáp án đúng là: B
Gọi G là trọng tâm của tam giác ABC
Ta có: \(2\overrightarrow {{\rm{MA}}} + 3\overrightarrow {{\rm{MB}}} + 4\overrightarrow {{\rm{MC}}} \)\( = 2(\overrightarrow {{\rm{MI}}} + \overrightarrow {{\rm{IA}}} ) + 3(\overrightarrow {{\rm{MI}}} + \overrightarrow {{\rm{IB}}} ) + 4(\overrightarrow {{\rm{MI}}} + \overrightarrow {{\rm{IC}}} )\)
Chọn điểm I sao cho
\(2\overrightarrow {{\rm{IA}}} + 3\overrightarrow {{\rm{IB}}} + 4\overrightarrow {{\rm{IC}}} = \vec 0 \Leftrightarrow 3(\overrightarrow {{\rm{IA}}} + \overrightarrow {{\rm{IB}}} + \overrightarrow {{\rm{IC}}} ) + \overrightarrow {{\rm{IC}}} - \overrightarrow {{\rm{IA}}} = \vec 0\)
Mà G là trọng tâm của tam giác ABC
\( \Rightarrow \overrightarrow {{\rm{IA}}} + \overrightarrow {{\rm{IB}}} + \overrightarrow {{\rm{IC}}} = 3\overrightarrow {{\rm{IG}}} \)
Khi đó: \(9\overrightarrow {{\rm{IG}}} + \overrightarrow {{\rm{IC}}} - \overrightarrow {{\rm{IA}}} = \vec 0 \Leftrightarrow 9\overrightarrow {{\rm{IG}}} + \overrightarrow {{\rm{AI}}} + \overrightarrow {{\rm{IC}}} = \vec 0 \Leftrightarrow 9\overrightarrow {{\rm{IG}}} = \overrightarrow {{\rm{CA}}} {\rm{ }}(*)\)
Do đó, \(\left| {2\overrightarrow {{\rm{MA}}} + 3\overrightarrow {{\rm{MB}}} + 4\overrightarrow {{\rm{MC}}} } \right| = \left| {\overrightarrow {{\rm{MB}}} - \overrightarrow {{\rm{MA}}} } \right|\)
\[\begin{array}{l} \Leftrightarrow \left| {9\overrightarrow {{\rm{MI}}} + 2\overrightarrow {{\rm{IA}}} + 3\overrightarrow {{\rm{IB}}} + 4\overrightarrow {{\rm{IC}}} } \right| = \left| {\overrightarrow {{\rm{AB}}} } \right|\\ \Leftrightarrow 9{\rm{MI}} = {\rm{AB}}\end{array}\]
Vì I là điểm cố định thỏa mãn (*) nên tập hợp các điểm M cần tìm là đường tròn tâm I, bán kính \[{\rm{R}} = \frac{{AB}}{9} = \frac{a}{9}\]
Vậy đáp án cần chọn là B.
Câu 35:
Cho tam giác đều ABC. Mệnh đề nào sau đây sai?
Đáp án đúng là: A
Ta có tam giác đều ABC nên \(\overrightarrow {AB} ;\overrightarrow {BC} \) không cùng hướng
Suy ra \(\overrightarrow {AB} \ne \overrightarrow {BC} \)
Do đó A sai, B đúng và C, D cũng đúng
Vậy đáp án cần chọn là A.
Câu 36:
Cho tam giác ABC. Đặt \(\overrightarrow a = \overrightarrow {BC} ,\overrightarrow b = \overrightarrow {AC} \). Các cặp vectơ nào sau đây cùng phương?
Đáp án đúng là: C
Ta có thể thấy: \( - 10\overrightarrow a - 2\overrightarrow b = - 2\left( {5\overrightarrow a + \overrightarrow b } \right)\)
Như vậy\(5\overrightarrow a + \overrightarrow b \) và\( - 10\overrightarrow a - 2\overrightarrow b \) là cặp vectơ cùng phương
Vậy đáp án cần chọn là C.
Câu 37:
Có bao nhiêu số có 3 chữ số được lập thành từ các chữ số 3, 2, 1?
Đáp án đúng là: B
Gọi số thỏa mãn bài toán là abc
Có 3 cách chọn chữ số a
Có 3 cách chọn chữ số b
Có 3 cách chọn chữ số c
Suy ra có 3 . 3 . 3 = 27 số tạo thành từ các chữ số 3, 2, 1
Vậy đáp án cần chọn là B.
Câu 38:
Gọi m là giá trị để hàm số \(y = \frac{{x - {m^2}}}{{x + 8}}\) có giá trị nhỏ nhất trên [0; 3] bằng – 2. Mệnh đề nào sau đây là đúng?
Đáp án đúng là: D
Ta có:
\(\begin{array}{l}y = \frac{{x - {m^2}}}{{x + 8}},x \ne - 8\\ \Rightarrow y' = \frac{{1.8 - 1.\left( { - {m^2}} \right)}}{{{{(x + 8)}^2}}} = \frac{{{m^2} + 8}}{{{{(x + 8)}^2}}} > 0,\forall x \ne - 8\end{array}\)
Suy ra hàm số luôn đồng biến trên các khoảng (–∞;–8) và (–8; +∞)
\( \Rightarrow {\min _{[0;3]}}y = y(0) = - \frac{{{m^2}}}{8} = - 2 \Rightarrow m = \pm 4\)
Suy ra |m| < 5
Vậy đáp án cần chọn là D.
Câu 39:
Gọi S là tập hợp tất cả các số nguyên dương của tham số m sao cho bất phương trình 4x – m . 2x – m + 15 ≥ 0 có nghiệm đúng với mọi x ∈ [1; 2]. Tính số phần tử của S.
Đáp án đúng là: D
4x – m . 2x – m + 15 ≥ 0 (1)
Đặt \({2^x} = t(t > 0)\) ta được \({t^2} - mt - m + 15 \ge 0\) (2)
Để bất phương trình (1) có nghiệm đúng với mọi x ∈ [1; 2] thì (2) đúng với mọi t ∈ [2; 4]
Ta có: \((2) \Leftrightarrow {t^2} + 15 \ge m(t + 1) \Leftrightarrow \frac{{{t^2} + 15}}{{t + 1}} \ge m\)
Xét hàm số \(f(t) = \frac{{{t^2} + 15}}{{t + 1}},t \in [2;4]\)
Ta có \(f'(t) = \frac{{(t + 5)(t - 3)}}{{{{(t + 1)}^2}}}\); \(f'(t) = 0 \Leftrightarrow \left[ \begin{array}{l}t = 3\\t = - 5\end{array} \right. \Leftrightarrow t = 3\)
Bảng biến thiên:
Suy ra m ≤ 6
Vậy ta chọn đáp án D.
Câu 40:
Chọn phát biểu sai?
Đáp án đúng là: D
Ta có ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi các vec tơ \(\overrightarrow {AB} ,\overrightarrow {AC} ,\overrightarrow {BC} \) cùng phương, hay \(\exists k \in \mathbb{R},k \ne 0\) sao cho \(\overrightarrow {AB} = k\overrightarrow {AC} \) hoặc \(\overrightarrow {AC} = k\overrightarrow {BC} \)
Chú ý rằng hệ số k phải khác 0 nên chỉ có đáp án D sai
Vậy đáp án cần chọn là D.
Câu 41:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB = a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Đường thẳng BC tạo với mặt phẳng (SAC) góc 30°. Tính diện tích tam giác ABC.
Đáp án đúng là: A
Gọi I là trung điểm của AB
Vì tam giác SAB đều nên \(\left\{ {\begin{array}{*{20}{l}}{SI = \frac{{a\sqrt 3 }}{2}}\\{SI \bot AB}\end{array}} \right.\)
Mà \((SAB) \bot (ABC) \Rightarrow SI \bot (ABC){\rm{; }}\left\{ {\begin{array}{*{20}{l}}{SI \bot AC}\\{AB \bot AC}\end{array} \Rightarrow AC \bot (SAB)} \right.\)
Kẻ BK vuông góc với SA tại K
Vì \(AC \bot (SAB)\) nên \(AC \bot BK \Rightarrow BK \bot (SAC){\rm{ v\`a }}BK = \frac{{a\sqrt 3 }}{2}\)
Do đó, góc giữa BC và (SAC) là \(\widehat {BCK}\) suy ra \(\widehat {BCK} = 30^\circ \)
Khi đó: \(BC = \frac{{BK}}{{\sin \widehat {BCK}}} = a\sqrt 3 \)
Vì tam giác ABC vuông tại A nên theo định lý Pytago có \(AC = \sqrt {B{C^2} - A{B^2}} = a\sqrt 2 \)
Suy ra diện tích tam giác ABC là \({S_{ABC}} = \frac{1}{2}.AB.AC = \frac{{{a^2}\sqrt 2 }}{2}\)
Vậy ta chọn đáp án A.
Câu 42:
Biết \(\int\limits_1^2 {\frac{{x + 1}}{{{x^2} + x\ln {\rm{x}}}}} d{\rm{x}} = \ln \left( {\ln a + b} \right)\) với a, b là các số nguyên dương. Tính P = a2 + ab + b2.
Đáp án đúng là: A
Ta có:
\(\int_1^2 {\frac{{x + 1}}{{{x^2} + x\ln x}}} \;{\rm{d}}x = \int_1^2 {\frac{{1 + \frac{1}{x}}}{{x + \ln x}}} \;{\rm{d}}x = \int_1^2 {\frac{{{\rm{d}}(x + \ln x)}}{{x + \ln x}}} = \ln |x + \ln x|_1^2 = \ln (\ln 2 + 2)\)
Mặt khác:
\(\begin{array}{l}\int_1^2 {\frac{{x + 1}}{{{x^2} + x\ln x}}} \;{\rm{d}}x = \ln (\ln a + b) = \ln (\ln 2 + 2)\\ \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = 2}\\{b = 2}\end{array} \Rightarrow P = 12} \right.\end{array}\)
Vậy đáp án cần chọn là A.
Câu 43:
Cho hai số thực a và b với 1 < a < b. Khẳng định nào dưới đây là đúng?
Đáp án đúng là: D
Ta có: logab > logaa = 1, logba < logbb = 1
Suy ra logba < 1 < logab
Vậy ta chọn đáp án D.
Câu 44:
Cho các số phức z thỏa mãn |z| = 4. Biết rằng tập hợp các điểm biểu diễn số phức w = (3 + 4i)z + i là một đường tròn. Tính bán kính r của đường tròn đó.
Đáp án đúng là: C
Giả sử \(w = a + bi\,\,\left( {a,b \in \mathbb{R}} \right)\). Ta có:
\(\begin{array}{l}w = (3 + 4i)z + i \Leftrightarrow a + bi = (3 + 4i)z + i\\ \Leftrightarrow a + (b - 1)i = (3 + 4i)z\\ \Leftrightarrow z = \frac{{a + (b - 1)i}}{{3 + 4i}}\\ \Leftrightarrow z = \frac{{[a + (b - 1)i](3 - 4i)}}{{25}}\\ \Leftrightarrow z = \frac{1}{{25}}[3a + 4b - 4 + ( - 4a + 3b - 3)i]\end{array}\)
Theo giả thiết cho |z| = 4 nên ta có
\(\begin{array}{l}\frac{1}{{{{25}^2}}}\left[ {{{(3a + 4b - 4)}^2} + {{( - 4a + 3b - 3)}^2}} \right] = {4^2}\\ \Leftrightarrow {(3a + 4b - 4)^2} + {( - 4a + 3b - 3)^2} = {100^2}\\ \Leftrightarrow 25{a^2} + 25{b^2} + 25 - 50b = {100^2}\\ \Leftrightarrow {a^2} + {b^2} - 2b + 1 = {20^2}\\ \Leftrightarrow {a^2} + {(b - 1)^2} = {20^2}\end{array}\)
Tập hợp các điểm trong mặt phẳng tọa độ Oxy biểu diễn số phức w là một đường tròn có bán kính bằng 20
Vậy ta chọn đáp án C.
Câu 45:
Cho khối hộp chữ nhật ABCD.A′B′C′D′ có đáy là hình vuông, BD = 2a, góc giữa hai mặt phẳng (A′BD) và (ABCD) bằng 30°. Thể tích của khối hộp chữ nhật đã cho bằng:
Đáp án đúng là: D
Ta có:
(A’BC) ∩ (ABCD) = BD
\(\left\{ \begin{array}{l}AA' \bot B{\rm{D}}\\AO \bot B{\rm{D}}\end{array} \right. \Rightarrow \left( {A'AO} \right) \bot B{\rm{D}}\)
\(\left\{ \begin{array}{l}\left( {A'AO} \right) \cap \left( {A'B{\rm{D}}} \right) = A'O\\\left( {A'AO} \right) \cap \left( {ABC{\rm{D}}} \right) = AO\end{array} \right.\)
Suy ra: \(\widehat {\left( {\left( {A'B{\rm{D}}} \right);\left( {ABC{\rm{D}}} \right)} \right)} = \widehat {\left( {A'O,AO} \right)} = \widehat {AO{\rm{A}}'} = 30^\circ \)
Vì ABCD là hình vuông có hai đường chéo cắt nhau tại O
Suy ra O là trung điểm của AC và BD
Do đó \(AO = \frac{1}{2}AC = \frac{1}{2}B{\rm{D}} = a\)
Xét tam giác A’OA vuông tại A có \(AA' = \tan 30^\circ .AO = \frac{{a\sqrt 3 }}{3}\)
\( \Rightarrow {V_{ABCD.A'B'C'D'}} = {S_{ABC{\rm{D}}}}{\rm{.AA}}' = \frac{1}{2}AC.B{\rm{D}}.AA' = \frac{1}{2}.{(2a)^2} \cdot \frac{{a\sqrt 3 }}{3} = \frac{{2\sqrt 3 {a^3}}}{3}\)
Vậy ta chọn đáp án D.
Câu 46:
Cho hình lăng trụ tam giác đều ABC.A’B’C’ có AB = a, đường thẳng A’B tạo với mặt phẳng (BCC’B’) một góc bằng 30°. Tính thể tích khối lăng trụ ABC.A’B’C’.
Đáp án đúng là: B
Gọi M là trung điểm của B’C’
Vì tam giác A’B’C’ đều nên A’M ⊥ B’C
Ta có: \(\left\{ \begin{array}{l}A'M \bot B'C'\\A'M \bot BB'\left( {BB' \bot \left( {A'B'C'} \right)} \right)\end{array} \right. \Rightarrow A'M \bot \left( {BCC'B'} \right)\)
\( \Rightarrow \widehat {\left( {A'B;\left( {BCC'B'} \right)} \right)} = \widehat {\left( {A'B;MB} \right)} = \widehat {A'BM} = 30^\circ \)
Theo bài ra ta có \(\Delta A'B'C'\) đều cạnh a có AM là đường cao nên \(A'M = \frac{{a\sqrt 3 }}{2}\) và \({S_{A'B'C'}} = \frac{1}{2}.AM.B'C' = \frac{1}{2}.\frac{{a\sqrt 3 }}{2}.a = \frac{{{a^2}\sqrt 3 }}{4}\)
Ta có: \(A'M \bot \left( {BCC'B'} \right) \Rightarrow A'M \bot BM\) nên tam giác A’BM vuông tại M
Suy ra: \(BM = A'M.\cot 30^\circ = \frac{{3a}}{2}\)
Áp dụng định lí Pythagore trong tam giác vuông BB’M ta có:
\(BB' = \sqrt {B{M^2} - B'{M^2}} = \sqrt {{{\left( {\frac{{3a}}{2}} \right)}^2} - {{\left( {\frac{a}{2}} \right)}^2}} = a\sqrt 2 \)
Do đó \({V_{ABC.A'B'C'}} = BB'.{S_{A'B'C'}} = a\sqrt 2 \cdot \frac{{{a^2}\sqrt 3 }}{4} = \frac{{{a^3}\sqrt 6 }}{4}.\)
Vậy đáp án cần chọn là B.
Câu 47:
Cho tam giác ABC đều cạnh a, H là trung điểm của BC. Tính \(\left| {\overrightarrow {CA} - \overrightarrow {HC} } \right|\).
Đáp án đúng là: D
Gọi D là điềm thỏa mãn tứ giác ACHD là hình bình hành
Suy ra AD = HC, AD // HC
Mà BH = HC, AH ⊥ BC (do tam giác ABC đều có trung tuyến AH)
Do đó AHBD là hình chữ nhật
Suy ra \(\left| {\overrightarrow {CA} - \overrightarrow {HC} } \right| = \left| {\overrightarrow {CA} + \overrightarrow {CH} } \right| = \left| {\overrightarrow {CD} } \right| = CD\)
Vì tam giác BCD vuông tại B nên theo định lý Pytago ta có:
\(CD = \sqrt {B{D^2} + B{C^2}} = \sqrt {A{H^2} + B{C^2}} = \sqrt {\frac{{3{a^2}}}{4} + {a^2}} {\rm{ }} = \frac{{a\sqrt 7 }}{2}\)
Vậy ta chọn đáp án D.