Trắc nghiệm Toán 12 Chân trời sáng tạo Bài 2. Phương trình đường thẳng trong không gian có đáp án
Trắc nghiệm Toán 12 Chân trời sáng tạo Bài 2. Phương trình đường thẳng trong không gian có đáp án
-
39 lượt thi
-
20 câu hỏi
-
60 phút
Danh sách câu hỏi
Câu 1:
I. Nhận biết
Trong hệ tọa độ \[Oxyz\], cho đường thẳng \[d:\frac{{x - 2}}{{ - 1}} = \frac{{y - 1}}{2} = \frac{z}{1}\]. Đường thẳng \[d\] có một vectơ chỉ phương là
Đáp án đúng là: A
Trong hệ tọa độ \[Oxyz\], đường thẳng \[d\] đi qua điểm \[A\left( {{x_0};{y_0};{z_0}} \right)\] và có vectơ chỉ phương \[\overrightarrow u = \left( {a;b;c} \right)\] với \[a,b,c\] đều là các số khác 0, ta có phương trình chính tắc của đường thẳng \[d:\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c}.\]
Do đó, đường thẳng \[d\] có một vectơ chỉ phương là \[\overrightarrow u = \left( { - 1;2;1} \right).\]
Câu 2:
Trong hệ tọa độ \[Oxyz\], cho hai điểm \[A\left( {5; - 3;6} \right)\]; \[B\left( {5; - 1; - 5} \right)\]. Tìm một vectơ chỉ phương của đường thẳng \[AB\].
Đáp án đúng là: C
Vectơ chỉ phương của đường thẳng \[AB\] là \[\overrightarrow u = \overrightarrow {AB} = \left( {0;2; - 11} \right).\]
Câu 3:
Cho đường thẳng \[d:\left\{ \begin{array}{l}x = 1\\y = - 2 - 2t\\z = 2 - 11t\end{array} \right.\]. Điểm nào sau đây thuộc đường thẳng \[d\]?
Đáp án đúng là: D
Ta có phương trình tham số của đường thẳng \[d:\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\], trong đó điểm \[A\left( {{x_0};{y_0};{z_0}} \right)\] là điểm thuộc đường thẳng và \[\overrightarrow u = \left( {a;b;c} \right)\] là vectơ chỉ phương của đường thẳng.
Vậy điểm \[Q\left( {1; - 3;4} \right)\] thuộc đường thẳng \[d:\left\{ \begin{array}{l}x = 1 + 2t\\y = - 3 + t\\z = 4 + 5t\end{array} \right.\].
Câu 4:
Trong hệ tọa độ \[Oxyz\], đường thẳng nào dưới đây đi qua điểm \[A\left( {3; - 3;2} \right)\]?
Đáp án đúng là: C
Thay tọa độ điểm \[A\] vào các đáp án, ta được đường thẳng \[\frac{{x - 3}}{{ - 1}} = \frac{{y + 3}}{{ - 3}} = \frac{{z - 2}}{2}\] đi qua điểm \[A\left( {3; - 3;2} \right)\].
Câu 5:
Trong hệ tọa độ \[Oxyz\], phương trình đường thẳng đi qua hai điểm \[A\left( {1;2;3} \right)\] và \[B\left( {5;4; - 1} \right)\] là
Đáp án đúng là: D
Ta có vectơ chỉ phương của đường thẳng \[AB\] là \[\overrightarrow u = \overrightarrow {AB} = \left( {4;2; - 4} \right) = - 2\left( { - 2; - 1;2} \right)\].
Suy ra \[\overrightarrow u = \left( { - 2; - 1;2} \right)\] là một vectơ chỉ phương của đường thẳng.
Do đó, phương trình đường thẳng thỏa mãn là: \[\frac{{x - 3}}{{ - 2}} = \frac{{y - 3}}{{ - 1}} = \frac{{z - 1}}{2}.\]
Câu 6:
II. Thông hiểu
Trong hệ tọa độ \[Oxyz\], phương trình tham số của đường thẳng đi qua điểm \[A\left( {2;0; - 1} \right)\] và vuông góc với mặt phẳng \[\left( P \right):2x - y + z + 3 = 0\] là
Đáp án đúng là: A
Do đường thẳng vuông góc với mặt phẳng \[\left( P \right):2x - y + z + 3 = 0\] nên vectơ chỉ phương của đường thẳng là \[\overrightarrow u = \overrightarrow {{n_P}} = \left( {2; - 1;1} \right)\].
Phương trình tham số của đường thẳng là: \[\left\{ \begin{array}{l}x = 2 + 2t\\y = - t\\z = - 1 + t\end{array} \right.{\rm{ }}\left( {t \in \mathbb{R}} \right).\]
Câu 7:
Trong hệ tọa độ \[Oxyz\], cho hai đường thẳng \[{\Delta _1}:\left\{ \begin{array}{l}x = 5 - 2t\\y = 5 + 3t\\z = 2t\end{array} \right.\] và \[{\Delta _2}:\] \[\frac{{x - 1}}{1} = \frac{{y + 3}}{{ - 2}} = \frac{{z - 6}}{4}\]. Góc giữa hai đường thẳng \[{\Delta _1}\] và \[{\Delta _2}\] bằng
Đáp án đúng là: B
Ta có: \[{\overrightarrow u _{{\Delta _1}}} = \left( { - 2;3;2} \right),{\overrightarrow u _{{\Delta _2}}} = \left( {1; - 2;4} \right)\].
Suy ra \[\cos \left( {{\Delta _1},{\Delta _2}} \right) = \left| {\cos \left( {{{\overrightarrow u }_{{\Delta _1}}},{{\overrightarrow u }_{{\Delta _2}}}} \right)} \right| = \frac{{\left| { - 2.1 + 3.\left( { - 2} \right) + 2.4} \right|}}{{\sqrt {{{\left( { - 2} \right)}^2} + {3^2} + {2^2}} .\sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {4^2}} }} = 0.\]
Vậy góc giữa hai đường thẳng \[{\Delta _1}\] và \[{\Delta _2}\] bằng \[90^\circ .\]
Câu 8:
Trong hệ tọa độ \[Oxyz\], cho hai đường thẳng \[{d_1}:\frac{{x - 1}}{1} = \frac{y}{1} = \frac{{z + 2}}{{ - 2}}\] và \[{d_2}:\frac{{x + 2}}{{ - 2}} = \frac{{y - 1}}{{ - 1}} = \frac{z}{2}\]. Xét vị trí tương đối của hai đường thẳng đã cho
Đáp án đúng là: A
Ta có: đường thẳng \[{d_1}\] có vectơ chỉ phương là \[\overrightarrow {{u_1}} = \left( {1;1; - 2} \right)\] và điểm \[A\left( {1;0; - 2} \right).\]
đường thẳng \[{d_2}\] có vectơ chỉ phương là \[\overrightarrow {{u_2}} = \left( { - 2; - 1;2} \right)\] và điểm \[B\left( { - 2; - 1;2} \right).\]
Xét: \[\left\{ \begin{array}{l}\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_1}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}1&{ - 2}\\{ - 1}&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 2}&1\\2&{ - 2}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&1\\{ - 2}&{ - 1}\end{array}} \right|} \right) = \left( {0;2;3} \right)\\\overrightarrow {AB} .\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_1}} } \right] = - 3.0 + \left( { - 1} \right).2 + 4.3 = 10\end{array} \right.\]
Do đó, hai đường thẳng chéo nhau.
Câu 9:
Trong hệ tọa độ \[Oxyz\], cho đường thẳng \[d:\frac{x}{1} = \frac{y}{2} = \frac{z}{{ - 1}}\] và mặt phẳng \[\left( P \right):2x + y + z - 4 = 0\]. Tính góc giữa đường thẳng \[d\] và mặt phẳng \[\left( P \right)\].
Đáp án đúng là: A
Ta có: \[{\overrightarrow u _d} = \left( {1;2; - 1} \right)\] và \[{\overrightarrow n _{\left( P \right)}} = \left( {2;1;1} \right).\]
Suy ra \[\sin \left( {d,\left( P \right)} \right) = \left| {\cos \left( {{{\overrightarrow u }_d},{{\overrightarrow u }_{\left( P \right)}}} \right)} \right| = \frac{{\left| {1.2 + 2.1 + \left( { - 1} \right).1} \right|}}{{\sqrt {{1^2} + {2^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{2^2} + {1^2} + {1^2}} }} = \frac{1}{2}.\]
Vậy góc giữa đường thẳng \[d\] và mặt phẳng \[\left( P \right)\] là \[30^\circ .\]
Câu 10:
Trong hệ tọa độ \[Oxyz\], cho ba điểm \[A\left( {1; - 1;0} \right)\], \[B\left( {1;0; - 2} \right)\], \[C\left( {3; - 1; - 1} \right)\]. Khoảng cách từ điểm \[A\] đến đường thẳng \[BC\] là
Đáp án đúng là: B
Ta có: \[\overrightarrow {BC} = \left( {2; - 1;1} \right)\], \[\overrightarrow {AB} = \left( {0;1; - 2} \right)\].
\[\left[ {\overrightarrow {AB} ,\overrightarrow {BC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}1&{ - 2}\\{ - 1}&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 2}&0\\1&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&1\\2&{ - 1}\end{array}} \right|} \right) = \left( { - 1; - 2; - 2} \right)\].
Khoảng cách từ điểm \[A\] đến đường thẳng \[BC\] là
\[d\left( {A,BC} \right) = \frac{{\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {BC} } \right]} \right|}}{{\left| {\overrightarrow {BC} } \right|}} = \frac{{\sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 2} \right)}^2}} }}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {1^2}} }} = \frac{{\sqrt 6 }}{2}.\]
Câu 11:
Cho đường thẳng \[d:\frac{{x + 1}}{{ - 2}} = \frac{{y - 5}}{2} = \frac{{z - 2}}{1}\] và mặt phẳng \[\left( P \right):\]\[3x - 4y + 14z - 5 = 0\]. Tìm khẳng định đúng?
Đáp án đúng là: A
Ta có: \[{\overrightarrow u _d} = \left( { - 2;2;1} \right)\], \[{\overrightarrow n _P} = \left( {3; - 4;14} \right)\] và \[M\left( { - 1;5;2} \right) \in d\]
Có \[\left\{ \begin{array}{l}{\overrightarrow u _d}.{\overrightarrow n _P} = - 2.3 + 2.\left( { - 4} \right) + 1.14 = 0\\3.\left( { - 1} \right) - 4.5 + 14.2 - 5 = 0\end{array} \right.\]
Suy ra \[\left\{ \begin{array}{l}{\overrightarrow u _d}.{\overrightarrow n _P} = 0\\M \in \left( P \right)\end{array} \right.\].
Do đó, \[d \subset \left( P \right).\]
Câu 12:
Cho mặt phẳng \[\left( P \right):x - 2y + mz = 0\] và đường thẳng \[d:\frac{{x - 1}}{2} = \frac{{y + 1}}{{ - 4}} = \frac{{z - 3}}{1}\]. Tìm tham số \[m\] để \[d \bot \left( P \right)\].
Đáp án đúng là: D
Ta có: \[{\overrightarrow u _d} = \left( {2; - 4;1} \right)\], \[{\overrightarrow n _P} = \left( {1; - 2;m} \right)\] và \[M\left( {1; - 1;3} \right) \in d\]
Để \[d \bot \left( P \right)\] \[ \Leftrightarrow {\overrightarrow u _d} = k{\overrightarrow n _P} \Leftrightarrow \left\{ \begin{array}{l}2 = k.1\\ - 4 = k.\left( { - 2} \right)\\1 = k.m\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k = 2\\m = \frac{1}{2}\end{array} \right.\].
Câu 13:
Tìm tất cả các giá trị của tham số \[m\] để đường thẳng \[d:\frac{{x - 2}}{{ - 2}} = \frac{{y - 1}}{1} = \frac{z}{1}\] song song với mặt phẳng \[\left( P \right):2x + \left( {1 - 2m} \right)y + {m^2}z + 1 = 0.\]
Đáp án đúng là: B
Ta có: \[{\overrightarrow u _d} = \left( { - 2;1;1} \right)\], \[{\overrightarrow n _P} = \left( {2;1 - 2m;{m^2}} \right)\] và \[M\left( {2;1;0} \right) \in d\].
Để \[d\parallel \left( P \right)\] thì \[\left\{ \begin{array}{l}{\overrightarrow u _d}.{\overrightarrow n _P} = 0\\M \notin \left( P \right)\end{array} \right.\] \[ \Leftrightarrow \left\{ \begin{array}{l} - 2.2 + 1 - 2m + {m^2} = 0\\2.2 + 1 - 2m + {m^2}.0 + 1 \ne 0\end{array} \right.\]
\[\left\{ \begin{array}{l}{m^2} - 2m - 3 = 0\\6 - 2m \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m = - 1\\m = 3\end{array} \right.\\m \ne 3.\end{array} \right.\]
Suy ra \[m = - 1.\]
Câu 14:
Trong không gian với hệ tọa độ \[Oxyz\], cho ba điểm \[A\left( {0; - 1;3} \right)\], \[B\left( {1;0;1} \right)\], \[C\left( { - 1;1;2} \right)\]. Viết phương trình đường thẳng \[d\] đi qua điểm \[A\] và song song với \[BC.\]
Đáp án đúng là: D
Ta có: \[{\overrightarrow u _d} = \overrightarrow {BC} = \left( { - 2;1;1} \right)\].
Phương trình đường thẳng \[d\] đi qua điểm \[A\] và song song với \[BC\] là
\[\frac{x}{{ - 2}} = \frac{{y + 1}}{1} = \frac{{z - 3}}{1}.\]
Câu 15:
Phương trình đường thẳng \[\Delta \] đi qua \[A\left( {2;3;0} \right)\] và vuông góc với mặt phẳng \[\left( P \right):x + 3y - z + 5 = 0\] là
Đáp án đúng là: B
Ta có: \[\overrightarrow {{u_\Delta }} = \overrightarrow {{n_P}} = \left( {1;3; - 1} \right)\].
Phương trình đường thẳng \[\Delta \] là: \[\left\{ \begin{array}{l}x = 1 + t\\y = 3t\\z = 1 - t.\end{array} \right.\]
Câu 16:
III. Vận dụng
Trong không gian \[Oxyz\], cho hai điểm \[A\left( {1;4;2} \right)\] và \[B\left( { - 1;2;4} \right)\]. Viết phương trình đường thẳng \[d\] đi qua trọng tâm tam giác \[OAB\] vuông góc với mặt phẳng \[\left( {OAB} \right).\]
Đáp án đúng là: B
Tọa độ trọng tâm tam giác \[OAB\] là \[G\left( {0;2;2} \right)\].
Ta có: \[\overrightarrow {OA} = \left( {1;4;2} \right)\], \[\overrightarrow {OB} = \left( { - 1;2;4} \right)\];
\[{\overrightarrow n _P} = \left[ {\overrightarrow {OA} ,\overrightarrow {OB} } \right] = \left( {\left| {\begin{array}{*{20}{c}}4&2\\2&4\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&1\\4&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&2\\{ - 1}&4\end{array}} \right|} \right)\]\[ = \left( {12; - 6;6} \right) = 6\left( {2; - 1;1} \right).\]
Do \[d\] vuông góc với \[\left( {OAB} \right)\] nên \[{\overrightarrow u _d} = {\overrightarrow n _P} = \left( {2; - 1;1} \right)\].
Phương trình đường thẳng \[d\] là: \[d:\frac{x}{2} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 2}}{1}.\]
Câu 17:
Trong không gian \[Oxyz\], gọi \[\Delta \] là giao tuyến của hai mặt phẳng \[\left( P \right):\]\[x - y + z + 3 = 0\] và \[\left( Q \right):2x + 3y - z - 3 = 0\]. Khi đó phương trình đường thẳng \[\Delta \] là
Đáp án đúng là: B
Gọi \[M\left( {x;y;z} \right) \in \Delta \] khi tọa độ của \[M\] là nghiệm của hệ phương trình:
\[\left\{ \begin{array}{l}x - y + z + 3 = 0\\2x + 3y - z - 3 = 0\end{array} \right.\]
Cho \[y = 0\], giải hệ phương trình ta có: \[\left\{ \begin{array}{l}x = 0\\y = 0\\z = - 3\end{array} \right.\], suy ra \[M\left( {0;0; - 3} \right)\].
Ta có: \[\overrightarrow {{n_P}} = \left( {1; - 1;1} \right)\], \[\overrightarrow {{n_Q}} = \left( {2;3; - 1} \right)\]
Có: \[\overrightarrow {{u_\Delta }} = \left[ {\overrightarrow {{n_P}} ,\overrightarrow {{n_Q}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&1\\3&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&1\\{ - 1}&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&{ - 1}\\2&3\end{array}} \right|} \right) = \left( { - 2;3;5} \right)\].
Phương trình đường thẳng \[\Delta \] là \[\frac{x}{{ - 2}} = \frac{y}{3} = \frac{{z + 3}}{5}.\]
Câu 18:
Trong không gian \[Oxyz\], cho hai đường thẳng \[{d_1}:\frac{{x - 6}}{1} = \frac{{y - 4}}{{ - 4}} = \frac{{z - 4}}{1}\] và \[{d_2}:\frac{{x - 2}}{1} = \frac{{y - 2}}{2} = \frac{z}{{ - 2}}\]. Viết phương trình đường thẳng \[\Delta \] là đường vuông góc chung của hai đường thẳng \[{d_1}\] và \[{d_2}\].
Đáp án đúng là: C
Giả sử \[A = \Delta \cap {d_1}\], \[B = \Delta \cap {d_2}\].
Ta có: \[A \in {d_1}\] nên \[A\left( {t + 6; - 4t + 4;t + 4} \right)\], \[B \in {d_2}\] nên \[B\left( {a + 2;2a + 2; - 2a} \right)\].
Suy ra \[\overrightarrow {AB} = \left( {a - t - 4;2a + 4t - 2; - 2a - t - 4} \right)\].
Vì \[\overrightarrow {AB} \bot {d_1},\overrightarrow {AB} \bot {d_2}\] nên ta có:
\[\left\{ \begin{array}{l}\overrightarrow {AB} \bot {\overrightarrow u _{{d_1}}} = 0\\\overrightarrow {AB} \bot {\overrightarrow u _{{d_2}}} = 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}a - t - 4 + \left( { - 4} \right)\left( {2a + 4t - 2} \right) - 2a - t - 4 = 0\\a - t - 4 + 2\left( {2a + 4t - 2} \right) - 2\left( { - 2a - t - 4} \right) = 0\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l} - 9a - 18t = 0\\9a + 9t = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 0\\t = 0\end{array} \right.\]
Suy ra \[A\left( {6;4;4} \right)\] và \[B\left( {2;2;0} \right)\].
Do đường thẳng \[\Delta \] đi qua \[A\] và \[B\] nên có vectơ chỉ phương
\[\overrightarrow u = \overrightarrow {AB} = \left( { - 4; - 2; - 4} \right) = - 2\left( {2;1;2} \right)\].
Gọi \[I\] là trung điểm của đoạn thẳng \[AB\] nên tọa độ điểm \[I\left( {4;3;2} \right)\].
Do đó, phương trình đường thẳng \[\Delta \] là \[\frac{{x - 4}}{2} = \frac{{y - 3}}{1} = \frac{{z - 2}}{2}.\]
Câu 19:
Cho đường thẳng \[d:\left\{ \begin{array}{l}x = 2 + t\\y = 3 + t\\z = 3\end{array} \right.\] và mặt phẳng \[\left( \alpha \right):x + y + z - 1 = 0\] và điểm \[A\left( {\frac{2}{3};1;\frac{2}{3}} \right)\]. Viết phương trình đường thẳng \[\Delta \]cắt \[d\] và \[\left( \alpha \right)\] lần lượt tại \[M,N\] sao cho tam giác \[OMN\] nhận \[G\] làm trọng tâm.
Đáp án đúng là: A
Gọi \[M \in d\] nên \[M\left( {2 + t;3 + t;3} \right)\].
Ta có: \[G\] là trọng tâm tam giác \[OMN\] thì
\[\left\{ \begin{array}{l}{x_G} = \frac{{{x_O} + {x_M} + {x_N}}}{3}\\{y_G} = \frac{{{y_O} + {y_M} + {y_N}}}{3}\\{z_G} = \frac{{{z_O} + {z_M} + {z_N}}}{3}\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}2 = 0 + 2 + t + {x_N}\\3 = 0 + 3 + t + {y_N}\\2 = 0 + 3 + {z_N}\end{array} \right.\] \[ \Rightarrow N\left( { - t; - t; - 1} \right)\].
Mà \[N \in \left( \alpha \right)\] nên \[ - t - t - 1 - 1 = 0 \Leftrightarrow t = - 1.\]
Suy ra \[M\left( {1;2;3} \right)\], \[N\left( {1;1; - 1} \right)\].
Ta có: \[\overrightarrow {MN} = \left( {0; - 1; - 4} \right) = - 1\left( {0;1;4} \right).\]
Vậy phương trình đường thẳng \[\Delta \]:\[\left\{ \begin{array}{l}x = 1\\y = 2 + t\\z = 3 + 4t.\end{array} \right.\]
Câu 20:
Trong không gian \[Oxyz\], cho điểm \[A\left( {0;2; - 4} \right)\] và đường thẳng \[{d_1}:\]\[\frac{{x - 2}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{2}.\] Gọi \[H\] là hình chiếu của \[A\] trên đường thẳng \[{d_1}\]. Đường thẳng \[AH\] có một vectơ chỉ phương là \[\overrightarrow u = \left( {a;b;c} \right)\] với \[a,b,c \in \mathbb{Z}.\] Khi đó \[2a - b + c\] bằng
Đáp án đúng là: A
Ta có phương trình tham số \[{d_1}:\left\{ \begin{array}{l}x = 2 + t\\y = 1 - t\\z = - 1 + 2t.\end{array} \right.\]
Đường thẳng \[{d_1}\] có một vectơ chỉ phương là \[\overrightarrow {{u_1}} = \left( {1; - 1;2} \right)\].
Điểm \[H \in {d_1}\] nên \[H\left( {2 + t;1 - t; - 1 + 2t} \right)\]\[ \Rightarrow \overrightarrow {AH} = \left( {2 + t; - 1 - t;3 + 2t} \right)\].
Vì \[H\] là hình chiếu của \[A\] trên đường thẳng \[{d_1}\] nên \[\overrightarrow {AH} \bot \overrightarrow {{u_1}} \]\[ \Leftrightarrow \overrightarrow {AH} .\overrightarrow {{u_1}} = 0\] hay
\[\left( {2 + t} \right).1 + \left( { - 1 - t} \right).\left( { - 1} \right) + \left( {3 + 2t} \right).2 = 0\] \[ \Leftrightarrow 6t + 9 = 0 \Leftrightarrow t = - \frac{3}{2}.\]
Khi đó \[\overrightarrow {AH} = \left( {\frac{1}{2};\frac{1}{2};0} \right).\]
Vì \[a,b,c \in \mathbb{Z}\] nên đường thẳng \[AH\] có một vectơ chỉ phương là \[\overrightarrow u = 2\overrightarrow {AH} = \left( {1;1;0} \right)\].
Vậy \[2a - b + c = 2.1 - 1 + 0 = 1.\]