Chia số 120 thành bốn phần tỉ lệ với các số 2; 4; 8; 10. Các số đó theo thứ tự tăng dần là:
A. 20; 40; 80; 100
B. 50; 40; 20; 10
C. 8; 16; 32; 40
D. 10; 20; 40; 50.
Đáp án đúng là: D
Giả sử chia số 120 thành bốn phần x, y, z, t tỉ lệ với các số 2; 4; 6; 8
Khi đó ta có \(:\frac{x}{2} = \frac{y}{4} = \frac{z}{8} = \frac{t}{{10}}\) và \(x + y + z + t = 120\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{x}{2} = \frac{y}{4} = \frac{z}{8} = \frac{t}{{10}} = \frac{{x + y + z + t}}{{2 + 4 + 8 + 10}} = \frac{{120}}{{24}} = 5\)
Do đó:
\(\begin{array}{l}\frac{x}{2} = 5 \Rightarrow x = 5.2 = 10\\\frac{y}{4} = 5 \Rightarrow y = 5.4 = 20\\\frac{z}{8} = 5 \Rightarrow z = 5.8 = 40\\\frac{t}{{10}} = 5 \Rightarrow t = 5.10 = 50\end{array}\)
Suy ra các số cần tìm sắp xếp theo thứ tự tăng dần là 10; 20; 40; 50
Vậy ta chọn đáp án D.
Cho khối hộp chữ nhật ABCD.A′B′C′D′ có đáy là hình vuông, BD = 2a, góc giữa hai mặt phẳng (A′BD) và (ABCD) bằng 30°. Thể tích của khối hộp chữ nhật đã cho bằng:
Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Gọi E, F lần lượt là trung điểm của AB, BC. Đẳng thức nào sau đây sai?
Cho hình thoi ABCD có AC = 8 và BD = 6. Tính \(\overrightarrow {AB} .\overrightarrow {AC} \).
Cho hàm số y = f(x) có bảng biến thiên như sau:
Số nghiệm thuộc đoạn [0; 2π] của phương trình f(cosx) = –2 là:
Cho hai học sinh lớp A, ba học sinh lớp B và bốn học sinh lớp C xếp thành một hàng ngang sao cho giữa hai học sinh lớp A không có học sinh nào lớp B. Hỏi có bao nhiêu cách xếp hàng như vậy?
Cho hàm số f(x) có bảng biến thiên như sau:
Số nghiệm thuộc đoạn [–π; 2π] của phương trình 2f(sinx) + 3 = 0 là:
Cho tam giác đều ABC cạnh a. Biết rằng tập hợp các điểm M thỏa mãn đẳng thức \(\left| {2\overrightarrow {MA} + 3\overrightarrow {MB} + 4\overrightarrow {MC} } \right| = \left| {\overrightarrow {MB} - \overrightarrow {MA} } \right|\) là đường tròn cố định có bán kính R. Tính bán kính R theo a.
Cho tam giác ABC vuông tại A, \(BC = a\sqrt 3 \), M là trung điểm của BC và có \(\overrightarrow {AM} .\overrightarrow {BC} = \frac{{{a^2}}}{2}\). Tính cạnh AB, AC.
Có bao nhiêu cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài nếu các sách Văn phải xếp kề nhau?
Trong khôn gian với hệ tọa độ Oxyz, cho các điểm A(2; 0; 0), B(0; 3; 0), C(0; 0; –4). Gọi H là trực tâm tam giác ABC. Tìm phương trình tham số của đường thẳng OH trong các phương án sau:
Biết rằng phương trình \({\left[ {{{\log }_{\frac{1}{3}}}\left( {9{\rm{x}}} \right)} \right]^2} + {\log _3}\frac{{{x^2}}}{{81}} - 7 = 0\) có hai nghiệm phân biệt x1; x2. Tính P = x1x2.
Cho hai số thực a và b với 1 < a < b. Khẳng định nào dưới đây là đúng?
Gọi S là tập hợp tất cả các số nguyên dương của tham số m sao cho bất phương trình 4x – m . 2x – m + 15 ≥ 0 có nghiệm đúng với mọi x ∈ [1; 2]. Tính số phần tử của S.