Cho hình thang vuông ABCD có đáy lớn AB = 4a, đáy nhỏ CD = 2a, đường cao AD = 3a; I là trung điểm của AD. Khi đó \(\left( {\overrightarrow {IA} + \overrightarrow {IB} } \right).\overrightarrow {I{\rm{D}}} \) bằng:
A. \(\frac{{9{{\rm{a}}^2}}}{2}\)
B. \( - \frac{{9{{\rm{a}}^2}}}{2}\)
C. 0
D. 9a2.
Đáp án đúng là: B
Do I là trung điểm AD nên \(IA = I{\rm{D}} = \frac{{A{\rm{D}}}}{2} = \frac{{3{\rm{a}}}}{2}\)
Ta có: \(\left( {\overrightarrow {IA} + \overrightarrow {IB} } \right).\overrightarrow {I{\rm{D}}} = \left( {\overrightarrow {IA} + \overrightarrow {IA} + \overrightarrow {AB} } \right).\overrightarrow {I{\rm{D}}} = 2\overrightarrow {IA} .\overrightarrow {I{\rm{D}}} = \frac{{ - 9{{\rm{a}}^2}}}{2}\)
Vậy đáp án cần chọn là B.
Cho khối hộp chữ nhật ABCD.A′B′C′D′ có đáy là hình vuông, BD = 2a, góc giữa hai mặt phẳng (A′BD) và (ABCD) bằng 30°. Thể tích của khối hộp chữ nhật đã cho bằng:
Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Gọi E, F lần lượt là trung điểm của AB, BC. Đẳng thức nào sau đây sai?
Cho hình thoi ABCD có AC = 8 và BD = 6. Tính \(\overrightarrow {AB} .\overrightarrow {AC} \).
Cho hàm số f(x) có bảng biến thiên như sau:
Số nghiệm thuộc đoạn [–π; 2π] của phương trình 2f(sinx) + 3 = 0 là:
Cho tam giác đều ABC cạnh a. Biết rằng tập hợp các điểm M thỏa mãn đẳng thức \(\left| {2\overrightarrow {MA} + 3\overrightarrow {MB} + 4\overrightarrow {MC} } \right| = \left| {\overrightarrow {MB} - \overrightarrow {MA} } \right|\) là đường tròn cố định có bán kính R. Tính bán kính R theo a.
Cho hai học sinh lớp A, ba học sinh lớp B và bốn học sinh lớp C xếp thành một hàng ngang sao cho giữa hai học sinh lớp A không có học sinh nào lớp B. Hỏi có bao nhiêu cách xếp hàng như vậy?
Cho hàm số y = f(x) có bảng biến thiên như sau:
Số nghiệm thuộc đoạn [0; 2π] của phương trình f(cosx) = –2 là:
Cho tam giác ABC vuông tại A, \(BC = a\sqrt 3 \), M là trung điểm của BC và có \(\overrightarrow {AM} .\overrightarrow {BC} = \frac{{{a^2}}}{2}\). Tính cạnh AB, AC.
Có bao nhiêu cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài nếu các sách Văn phải xếp kề nhau?
Trong khôn gian với hệ tọa độ Oxyz, cho các điểm A(2; 0; 0), B(0; 3; 0), C(0; 0; –4). Gọi H là trực tâm tam giác ABC. Tìm phương trình tham số của đường thẳng OH trong các phương án sau:
Biết rằng phương trình \({\left[ {{{\log }_{\frac{1}{3}}}\left( {9{\rm{x}}} \right)} \right]^2} + {\log _3}\frac{{{x^2}}}{{81}} - 7 = 0\) có hai nghiệm phân biệt x1; x2. Tính P = x1x2.
Cho hai số thực a và b với 1 < a < b. Khẳng định nào dưới đây là đúng?
Gọi S là tập hợp tất cả các số nguyên dương của tham số m sao cho bất phương trình 4x – m . 2x – m + 15 ≥ 0 có nghiệm đúng với mọi x ∈ [1; 2]. Tính số phần tử của S.