- Đề số 1
- Đề số 2
- Đề số 3
- Đề số 4
- Đề số 5
- Đề số 6
- Đề số 7
- Đề số 8
- Đề số 9
- Đề số 10
- Đề số 11
- Đề số 12
- Đề số 13
- Đề số 14
- Đề số 15
- Đề số 16
- Đề số 17
- Đề số 18
- Đề số 19
- Đề số 20
- Đề số 21
- Đề số 22
- Đề số 23
- Đề số 24
- Đề số 25
- Đề số 26
- Đề số 27
- Đề số 28
- Đề số 29
- Đề số 30
- Đề số 31
- Đề số 32
- Đề số 33
- Đề số 34
- Đề số 35
- Đề số 36
- Đề số 37
- Đề số 38
- Đề số 39
- Đề số 40
- Đề số 41
- Đề số 42
- Đề số 43
- Đề số 44
- Đề số 45
- Đề số 46
- Đề số 47
- Đề số 48
- Đề số 49
- Đề số 50
- Đề số 51
- Đề số 52
- Đề số 53
- Đề số 54
- Đề số 55
- Đề số 56
- Đề số 57
- Đề số 58
- Đề số 59
- Đề số 60
- Đề số 61
- Đề số 62
- Đề số 63
- Đề số 64
- Đề số 65
- Đề số 66
- Đề số 67
- Đề số 68
- Đề số 69
- Đề số 70
- Đề số 71
- Đề số 72
- Đề số 73
- Đề số 74
- Đề số 75
- Đề số 76
- Đề số 77
- Đề số 78
- Đề số 79
- Đề số 80
- Đề số 81
- Đề số 82
- Đề số 83
- Đề số 84
- Đề số 85
- Đề số 86
- Đề số 87
- Đề số 88
- Đề số 89
- Đề số 90
- Đề số 91
- Đề số 92
- Đề số 93
- Đề số 94
- Đề số 95
- Đề số 96
- Đề số 97
Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án (Phần 54)
-
10206 lượt thi
-
48 câu hỏi
-
60 phút
Danh sách câu hỏi
Câu 1:
Cho hàm số f(x) có bảng biến thiên như sau
Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x2 – 4x) = m có ít nhất ba nghiệm thực phân biệt thuộc khoảng (0; +∞)?
Đáp án đúng là: A
Phương trình: 3f(x2 – 4x) = m (1)
Đặt u = x2 – 4x
Ta có bảng biến thiên sau
Ta thấy:
+) Với u < –4, phương trình (1) vô nghiệm
+) Với u = –4, phương trình (1) có một nghiệm x = 2 > 0
+) Với –4 < u < 0, phương trình (1) có hai nghiệm x > 0
+) Với u ≥ 0, phương trình (1) có một nghiệm x > 0
Khi đó 3f(x2 – 4x) = m
\( \Rightarrow f\left( u \right) = \frac{m}{3}\) (2)
Ta thấy:
+) Nếu \(\frac{m}{3} = - 3 \Leftrightarrow m = - 9\) thì phương trình (2) có một nghiệm u = 0
Nên phương trình (1) có một nghiệm x > 0
+) Nếu \( - 3 < \frac{m}{3} < - 2 \Leftrightarrow - 9 < m < - 6\) thì phương trình (2) có một nghiệm u > 0 và một nghiệm u ∈ (–2; 0)
Nên phương trình (1) có ba nghiệm x > 0
+) Nếu \(\frac{m}{3} = - 2 \Leftrightarrow m = - 6\) thì phương trình (2) có một nghiệm u = –4, một nghiệm u ∈ (–2; 0) và một nghiệm u > 0
Nên phương trình (1) có bốn nghiệm x > 0
+) Nếu \( - 2 < \frac{m}{3} < 2 \Leftrightarrow - 6 < m < 6\) thì phương trình (2) có một nghiệm u < –4, hai nghiệm u ∈ (–4; 0) và một nghiệm u > 0
Nên phương trình (1) có năm nghiệm x > 0
+) Nếu \(\frac{m}{3} = 2 \Leftrightarrow m = 6\) thì phương trình (2) có một nghiệm u < –4, một nghiệm u = –2 và một nghiệm u > 0
Nên phương trình (1) có ba nghiệm x > 0
+) Nếu \(\frac{m}{3} > 2 \Leftrightarrow m > 6\) thì phương trình (2) có một nghiệm u < –4 và một nghiệm u > 0
Nên phương trình (1) có một nghiệm x > 0
Suy ra –9 < m ≤ 6
Do đó m ∈ {–8; –7; –6; –5; –4; –3; –2; –1; 0; 1; 2; 3; 4; 5; 6}
Vậy ta chọn đáp án A.
Câu 2:
Tìm m để \(y = \frac{{{x^2} + m{\rm{x}}}}{{1 - x}}\) có cực trị và khoảng cách giữa 2 điểm cực trị bằng 10.
\(y' = \frac{{ - \left( {{x^2} - 2{\rm{x}} - m} \right)}}{{{{\left( {1 - x} \right)}^2}}}\)
Để hàm số \(y = \frac{{{x^2} + m{\rm{x}}}}{{1 - x}}\) có 2 cực trị
⇔ y’ = 0 có hai nghiệm phân biệt
⇔ x2 – 2x – m = 0 có hai nghiệm phân biệt
Điều kiện \(\left\{ \begin{array}{l}f\left( 1 \right) = - 1 - m \ne 0\\\Delta ' = 1 + m > 0\end{array} \right. \Leftrightarrow m > - 1\)
Theo định lý Vi – ét, hai nghiệm của phương trình thỏa mãn
\(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\\{x_1}.{x_2} = - m\end{array} \right.{\rm{ }}(1)\)
Khoảng cách giữa hai điểm cực trị là
\({d^2} = {\left( {{{\rm{x}}_1} - {x_2}} \right)^2} + {\left( {{y_1} - {y_2}} \right)^2} = {\left( {{{\rm{x}}_1} - {x_2}} \right)^2} + {\left( { - {x_1} + \frac{{m + 1}}{{1 - {x_1}}} + {x_2} - \frac{{m + 1}}{{1 - {x_2}}}} \right)^2} = 100\)
\( \Leftrightarrow {x_1}^2 - 2{{\rm{x}}_1}{x_2} + {x_2}^2 + {\left( {{x_2} - {x_1} + \frac{{\left( {m + 1} \right)\left( {1 - {x_2}} \right) - \left( {m + 1} \right)\left( {1 - {x_1}} \right)}}{{\left( {1 - {x_1}} \right)\left( {1 - {x_2}} \right)}}} \right)^2} = 100\)
\( \Leftrightarrow \left( {{x_1}^2 + 2{{\rm{x}}_1}{x_2} + {x_2}^2} \right) - 4{{\rm{x}}_1}{x_2} + {\left( {{x_2} - {x_1} + \frac{{m - m{{\rm{x}}_2} + 1 - {x_2} - m + m{{\rm{x}}_1} - 1 + {x_1}}}{{\left( {1 - {x_1}} \right)\left( {1 - {x_2}} \right)}}} \right)^2} = 100\)
\( \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 4{{\rm{x}}_1}{x_2} + {\left( {{x_2} - {x_1} + \frac{{ - m{{\rm{x}}_2} - {x_2} + m{{\rm{x}}_1} + {x_1}}}{{1 - {x_1} - {x_2} + {x_1}{x_2}}}} \right)^2} = 100\)
\( \Leftrightarrow {2^2} - 4.\left( { - m} \right) + {\left( {{x_2} - {x_1} + \frac{{ - m{{\rm{x}}_2} - {x_2} + m{{\rm{x}}_1} + {x_1}}}{{1 - 2 - m}}} \right)^2} = 100\)
\( \Leftrightarrow 4 + 4m + {\left( {{x_2} - {x_1} + \frac{{ - m{{\rm{x}}_2} - {x_2} + m{{\rm{x}}_1} + {x_1}}}{{ - 1 - m}}} \right)^2} = 100\)
\( \Leftrightarrow 4 + 4m + {\left( {\frac{{\left( {{x_2} - {x_1}} \right)\left( { - 1 - m} \right) - m{{\rm{x}}_2} - {x_2} + m{{\rm{x}}_1} + {x_1}}}{{ - 1 - m}}} \right)^2} = 100\)
\( \Leftrightarrow 4 + 4m + {\left( {\frac{{ - {x_2} - m{{\rm{x}}_2} + {x_1} + m{{\rm{x}}_1} - m{{\rm{x}}_2} - {x_2} + m{{\rm{x}}_1} + {x_1}}}{{ - 1 - m}}} \right)^2} = 100\)
\( \Leftrightarrow 4 + 4m + {\left( {\frac{{2{x_2} + 2m{{\rm{x}}_2} - 2{x_1} - 2m{{\rm{x}}_1}}}{{1 + m}}} \right)^2} = 100\)
\( \Leftrightarrow 4 + 4m + 4{\left( {\frac{{\left( {{x_2} - {x_1}} \right)\left( {1 + m} \right)}}{{1 + m}}} \right)^2} = 100\)
\( \Leftrightarrow 4 + 4m + 4{\left( {{x_2} - {x_1}} \right)^2} = 100\)
\( \Leftrightarrow 4 + 4m + 4\left[ {{{\left( {{x_2} + {x_1}} \right)}^2} - 2{{\rm{x}}_1}{x_2}} \right] = 100\)
\( \Leftrightarrow 4 + 4m + 4\left( {4 + 4m} \right) = 100\)
\( \Leftrightarrow 20m + 20 = 100\)
\( \Leftrightarrow 20m = 80\)
\( \Leftrightarrow m = 4\)
Vậy m = 4.
Câu 3:
Phân tích đa thức thành nhân tử (x + y)3 – ( x – y)3.
Ta có:
\(\begin{array}{l}{(x + y)^3} - {(x - y)^3}\\ = {x^3} + 3{x^2}y + 3x{y^2} + {y^3} - {x^3} + 3{x^2}y - 3x{y^2} + {y^3}\\ = 6{x^2}y + 2{y^3}\\ = 2y\left( {3{x^2} + {y^2}} \right).\end{array}\)
Câu 4:
Ta có:
x2 + 6x + 9
= x2 + 2 . 3 . x + 32
= (x + 3)2.
Câu 5:
Cho \(A = \frac{1}{{2 + 2\sqrt a }} + \frac{1}{{2 - 2\sqrt a }} - \frac{{{a^2} + 1}}{{1 - {a^2}}}\)
a) Tìm điều kiện xác định rồi rút gọn A
b) Tìm a để \[{\rm{A}} < \frac{1}{3}\].
a) Điều kiện xác định a ≥ 0, a ≠ 1
\(A = \frac{1}{{2 + 2\sqrt a }} + \frac{1}{{2 - 2\sqrt a }} - \frac{{{a^2} + 1}}{{1 - {a^2}}}\)
\({\rm{A}} = \frac{1}{{2\left( {1 + \sqrt a } \right)}} + \frac{1}{{2\left( {1 - \sqrt a } \right)}} - \frac{{{a^2} + 1}}{{\left( {1 - a} \right)\left( {1 + a} \right)}}\)
\({\rm{A}} = \frac{1}{{2\left( {1 + \sqrt a } \right)}} + \frac{1}{{2\left( {1 - \sqrt a } \right)}} - \frac{{{a^2} + 1}}{{\left( {1 - \sqrt a } \right)\left( {1 + \sqrt a } \right)\left( {1 + a} \right)}}\)
\(A = \frac{{\left( {1 - \sqrt a } \right)\left( {1 + a} \right) + \left( {1 + \sqrt a } \right)\left( {1 + a} \right) - \left( {{a^2} + 1} \right)2}}{{2\left( {1 + \sqrt a } \right)\left( {1 - \sqrt a } \right)\left( {1 + a} \right)}}\)
\(A = \frac{{1 + a - \sqrt a - a\sqrt a + 1 + a + \sqrt a + a\sqrt a - 2{a^2} + 2}}{{2\left( {1 + \sqrt a } \right)\left( {1 - \sqrt a } \right)\left( {1 + a} \right)}}\)
\({\rm{A}} = \frac{{2a - 2{a^2}}}{{2\left( {1 - a} \right)\left( {1 + a} \right)}}\)
\({\rm{A}} = \frac{{2a\left( {1 - a} \right)}}{{2\left( {1 - a} \right)\left( {1 + a} \right)}}\)
\({\rm{A}} = \frac{a}{{1 + a}}\)
b) Để \[{\rm{A}} < \frac{1}{3}\]\( \Leftrightarrow \frac{a}{{1 + a}} < \frac{1}{3}\)
\( \Leftrightarrow \frac{a}{{1 + a}} - \frac{1}{3} < 0\)\( \Leftrightarrow \frac{{3a - a - 1}}{{1 + a}} < 0\)
\( \Leftrightarrow 2{\rm{a}} - 1 < 0\)\( \Leftrightarrow {\rm{a}} < \frac{1}{2}\)
Mà a ≥ 0, a ≠ 1
Suy ra \({\rm{0}} \le {\rm{a}} < \frac{1}{2}\)
Vậy \({\rm{0}} \le {\rm{a}} < \frac{1}{2}\).
Câu 6:
Trong mặt phẳng tọa độ Oxy, phương trình đường tròn (C') là ảnh của đường tròn qua (C): x2 + y2 – 2x + 4y – 1 = 0 với \(\overrightarrow v = \left( {1;2} \right)\) là:
Đáp án đúng là: B
Theo tính chất của phép tịnh tiến biến đường tròn thành đường tròn có cùng bán kính.
Ta có đường tròn (C) có tâm I(1; −2), bán kính \(R = \sqrt 6 \)
Với phép tịnh tiến theo \(\overrightarrow v = \left( {1;2} \right)\) thì ta có \(\left\{ \begin{array}{l}x' = x + 1\\y' = y + 2\end{array} \right.\)
Suy ra \[{T_{\overrightarrow v }}\left( I \right) = I'\left( {2;0} \right)\]
Vậy đường tròn (C') có tâm I'(2;0), bán kính \(R' = R = \sqrt 6 \) có phương trình \({\left( {x - 2} \right)^2} + {y^2} = 6\), ta chọn đáp án B.
Câu 7:
Tìm giá trị nhỏ nhất của hàm số \(y = 3{\rm{x}} + \frac{4}{{{x^2}}}\) trên khoảng (0; +∞).
Ta có :
\(y' = 3 - \frac{8}{{{x^3}}}\)
\(\begin{array}{l}y' = 0 \Leftrightarrow 3 - \frac{8}{{{x^3}}} = 0\\ \Leftrightarrow x = \frac{2}{{\sqrt[3]{3}}} \Rightarrow y = \frac{9}{{\sqrt[3]{3}}} = 3\sqrt[3]{9}.\end{array}\)
Vậy giá trị nhot nhất của \(y = 3{\rm{x}} + \frac{4}{{{x^2}}}\) là \(3\sqrt[3]{9}\).
Câu 8:
Cho hàm số \((C):y = \frac{{x + 2}}{{x - 1}}\)
Cho điểm M(0; m). Xác định m để từ A kẻ được 2 tiếp tuyến đến (C) sao cho 2 tiếp tuyến tương ứng nằm về hai phía đối với trục Ox.
Đường thẳng d đi qua điểm M, hệ số góc k có phương trình y = kx + m
d là tiếp tuyến \( \Leftrightarrow \left\{ \begin{array}{l}\frac{{x + 2}}{{x - 1}} = k{\rm{x}} + m\\\frac{{ - 3}}{{{{\left( {x - 1} \right)}^2}}} = k\end{array} \right.\) có nghiệm
Thay \(k = \frac{{ - 3}}{{{{\left( {x - 1} \right)}^2}}}\) vào phương trình y = kx + m ta được:
\(\frac{{x + 2}}{{x - 1}} = \frac{{ - 3{\rm{x}}}}{{{{\left( {x - 1} \right)}^2}}} + m\)
\( \Leftrightarrow \frac{{\left( {x + 2} \right)\left( {x - 1} \right)}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{ - 3{\rm{x}}}}{{{{\left( {x - 1} \right)}^2}}} + \frac{{m{{\left( {x - 1} \right)}^2}}}{{{{\left( {x - 1} \right)}^2}}}\)
⇔ x2 + x – 2 = –3x + m(x2 – 2x + 1)
⇔ x2 + x – 2 = –3x + mx2 – 2mx + m
⇔ (m – 1)x2 – 2(m + 2)x + m + 2 = 0 (*)
Để từ M kẻ được hai tiếp tuyến thì phương trình (*) có hai nghiệm phân biệt khác 1
\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' = 3\left( {m + 2} \right) > 0\\m \ne 1\\m - 1 - 2\left( {m + 2} \right) + m + 2 \ne 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m > - 2\\m \ne 1\end{array} \right.\)
Khi đó tọa độ hai điểm là M1(x1; y1) và M2(x2; y2) với x1; x2 là nghiệm của phương trùnh (*) và \({y_1} = \frac{{{x_1} + 2}}{{{x_1} - 1}};{y_2} = \frac{{{x_2} + 2}}{{{x_2} - 1}}\)
Để M1; M2 nằm về hai phía của Ox thì y1 . y2 = 0
\( \Leftrightarrow \frac{{{x_1} + 2}}{{{x_1} - 1}}.\frac{{{x_2} + 2}}{{{x_2} - 1}} < 0\)
\( \Leftrightarrow \frac{{\left( {{x_1} + 2} \right)\left( {{x_2} + 2} \right)}}{{\left( {{x_1} - 1} \right)\left( {{x_2} - 1} \right)}} < 0\)
\( \Leftrightarrow \frac{{{x_1}{x_2} + 2{x_1} + 2{{\rm{x}}_2} + 4}}{{{x_1}{x_2} - {x_1} - {x_2} + 1}} < 0\)
Áp dụng định lý Vi – ét ta có
\[{{\rm{x}}_1} + {x_2} = \frac{{2\left( {m + 2} \right)}}{{m - 1}};{x_1}{x_2} = \frac{{m + 2}}{{m - 1}}\]
Suy ra \(\frac{{\frac{{m + 2}}{{m - 1}} + \frac{{4\left( {m + 2} \right)}}{{m - 1}} + 4}}{{\frac{{m + 2}}{{m - 1}} - \frac{{2\left( {m + 2} \right)}}{{m - 1}} + 1}} < 0\)
\( \Leftrightarrow \frac{{\left( {m + 2} \right) + 4\left( {m + 2} \right) + 4\left( {m - 1} \right)}}{{\left( {m + 2} \right) - 2\left( {m + 2} \right) + \left( {m - 1} \right)}} < 0\)
\( \Leftrightarrow \frac{{9m + 6}}{{ - 3}} < 0\)\( \Leftrightarrow 9m + 6 > 0\)\( \Leftrightarrow m > \frac{{ - 2}}{3}\)
Mà \(\left\{ \begin{array}{l}m > - 2\\m \ne 1\end{array} \right.\)
Suy ra \(m > \frac{{ - 2}}{3};m \ne 1\)
Vậy \(m > \frac{{ - 2}}{3};m \ne 1\).
Câu 9:
Tìm các số nguyên x, y thỏa mãn x3 + 2x2 + 3x + 2 = y3.
Ta có:
\(\begin{array}{l}2{x^2} + 3x + 2 = 2\left( {{x^2} + \frac{3}{2}x + 1} \right) = 2\left( {{x^2} + 2 \cdot x \cdot \frac{3}{4} + \frac{9}{{16}} + \frac{7}{{16}}} \right)\\ = 2\left[ {{{\left( {x + \frac{3}{4}} \right)}^2} + \frac{7}{{16}}} \right] = 2{\left( {x + \frac{3}{4}} \right)^2} + \frac{7}{8}\end{array}\)
Vì \(2{\left( {x + \frac{3}{4}} \right)^2} \ge 0;\forall x\)
Nên \(2{\left( {x + \frac{3}{4}} \right)^2} + \frac{7}{8} > 0;\forall x\)
Mà x3 + 2x2 + 3x + 2 = y3
Suy ra x3 < y3
Giả sử y3 < (x + 2)3
⇔ x3 + 2x2 + 3x + 2 < x3 + 6x2 + 12x + 8
⇔ – 4x2 – 9x – 6 < 0
⇔ 4x2 + 9x + 6 > 0
\(\begin{array}{l} \Leftrightarrow 4{x^2} + 9x + 6 > 0\\ \Leftrightarrow 4\left( {{x^2} + \frac{9}{4}x + \frac{{81}}{{64}}} \right) + \frac{{15}}{{16}} > 0\\ \Leftrightarrow 4\left( {{x^2} + 2 \cdot x \cdot \frac{9}{8} + \frac{{81}}{{64}}} \right) + \frac{{15}}{{16}} > 0\\ \Leftrightarrow 4{\left( {x + \frac{9}{8}} \right)^2} + \frac{{15}}{{16}} > 0{\rm{ }}\end{array}\) (luôn đúng)
Do đó y3 < (x + 2)3
Mà x3 < y3
Nên x3 < y3 < (x + 2)3
Lại có y3 là lập phương của một số nguyên, giữa x3 và (x + 2)3 chỉ có 1 số lập phương duy nhất là (x + 1)3
Do đó y 3 = (x + 1)3
⇔ x3 + 2x2 + 3x + 2 = x3 + 3x2 + 3x + 1
⇔ x2 – 1 = 0
⇔ (x – 1)(x + 1) = 0
\( \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\x + 1 = 0\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 1\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}{y^3} = 1 + 2 + 3 + 2 = 8\\{y^3} = - 1 + 2 - 3 + 2 = 0\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}y = 2\\y = 0\end{array} \right.\)
Vậy (x; y) = (1; 2) hoặc (x; y) = (–1; 0).
Câu 10:
Tập xác định của hàm số y = logx là:
Đáp án đúng là: B
Hàm số y = logx xác định
⇔ x > 0
Suy ra tập xác định của hàm số y = logx là (0; +∞)
Vậy ta chọn đáp án B.
Câu 11:
Cho các số dương x, y, z thỏa mãn điều kiện xy + yz + zx = xyz. Chứng minh rằng:
\(\sqrt {x + yz} + \sqrt {y + x{\rm{z}}} + \sqrt {z + xy} \ge \sqrt {xyz} + \sqrt x + \sqrt y + \sqrt z \).
Đặt \(a = \frac{1}{x};b = \frac{1}{y};c = \frac{1}{z}\)
Suy ra a, b, c > 0 và \(a + b + c = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{{yz + x{\rm{z}} + xy}}{{xyz}} = 1\)
Khi đó \(\sqrt {x + yz} + \sqrt {y + x{\rm{z}}} + \sqrt {z + xy} \ge \sqrt {xyz} + \sqrt x + \sqrt y + \sqrt z \)
\( \Leftrightarrow \sqrt {\frac{1}{a} + \frac{1}{{bc}}} + \sqrt {\frac{1}{b} + \frac{1}{{ac}}} + \sqrt {\frac{1}{c} + \frac{1}{{ab}}} \ge \sqrt {\frac{1}{{abc}}} + \sqrt {\frac{1}{a}} + \sqrt {\frac{1}{b}} + \sqrt {\frac{1}{c}} \)
\( \Leftrightarrow \sqrt {a + bc} + \sqrt {b + ac} + \sqrt {c + ab} \ge \sqrt {ab} + \sqrt {bc} + \sqrt {ac} + 1\)
Ta có:
\(\begin{array}{l}\sqrt {a + bc} = \sqrt {a(a + b + c) + bc} = \sqrt {{a^2} + a(b + c) + bc} \ge \sqrt {{a^2} + 2a\sqrt {bc} + bc} \\ \Rightarrow \sqrt {a + bc} \ge \sqrt {{{(a + \sqrt {bc} )}^2}} = a + \sqrt {bc} \end{array}\)
Chứng minh tương tự:
\(\begin{array}{l}\sqrt {b + ac} \ge b + \sqrt {ac} ;\\\sqrt {c + ab} \ge c + \sqrt {ab} \end{array}\)
Cộng theo vế các bất đẳng thức trên ta được
\(\sqrt {a + bc} + \sqrt {b + ac} + \sqrt {c + ab} \ge \sqrt {ab} + \sqrt {bc} + \sqrt {ac} + a + b + c\)
\( \Leftrightarrow \sqrt {a + bc} + \sqrt {b + ac} + \sqrt {c + ab} \ge \sqrt {ab} + \sqrt {bc} + \sqrt {ac} + 1\)
Suy ra \(\sqrt {x + yz} + \sqrt {y + x{\rm{z}}} + \sqrt {z + xy} \ge \sqrt {xyz} + \sqrt x + \sqrt y + \sqrt z \)
Dấu “ = ” xảy ra khi \(a = b = c = \frac{1}{3} \Leftrightarrow x = y = z = 3\)
Vậy \(\sqrt {x + yz} + \sqrt {y + x{\rm{z}}} + \sqrt {z + xy} \ge \sqrt {xyz} + \sqrt x + \sqrt y + \sqrt z \).
Câu 12:
Ta có: \(\left\{ \begin{array}{l}y + x{y^2} = 6{{\rm{x}}^2}\\1 + {x^2}{y^2} = 5{{\rm{x}}^2}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\frac{y}{{{x^2}}} + \frac{{{y^2}}}{x} = 6\\\frac{1}{{{x^2}}} + {y^2} = 5\end{array} \right.\)
Đặt \[{\rm{a}} = \frac{1}{x}\] ta có: \(\left\{ \begin{array}{l}{a^2}y + a{y^2} = 6\\{a^2} + {y^2} = 5\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}ay\left( {a + y} \right) = 6\\{\left( {a + y} \right)^2} - 2{\rm{a}}y = 5\end{array} \right.\)
Đặt ay = z, a + y = t
Ta có \(\left\{ \begin{array}{l}t{\rm{z}} = 6\\{t^2} - 2{\rm{z}} = 5\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{\rm{z}} = \frac{{{t^2} - 5}}{2}\\t.\frac{{{t^2} - 5}}{2} = 6\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{\rm{z}} = \frac{{{t^2} - 5}}{2}\\{t^3} - 5t - 12 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{\rm{z}} = \frac{{{t^2} - 5}}{2}\\\left( {t - 3} \right)\left( {{t^2} + 3t + 4} \right) = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{\rm{z}} = \frac{{{t^2} - 5}}{2}\\t - 3 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{\rm{z}} = 2\\t = 3\end{array} \right.\)
Suy ra \(\left\{ \begin{array}{l}ay = 2\\a + y = 3\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}y\left( {3 - y} \right) = 2\\a = 3 - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{y^2} - 3y + 2 = 0\\a = 3 - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}y = 1\\y = 2\end{array} \right.\\a = 3 - y\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}y = 1\\a = 2\end{array} \right.\\\left\{ \begin{array}{l}y = 2\\a = 1\end{array} \right.\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}y = 1\\\frac{1}{x} = 2\end{array} \right.\\\left\{ \begin{array}{l}y = 2\\\frac{1}{x} = 1\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}y = 1\\x = \frac{1}{2}\end{array} \right.\\\left\{ \begin{array}{l}y = 2\\x = 1\end{array} \right.\end{array} \right.\)
Vậy hệ phương trình có nghiệm (x; y) = (1; 2) hoặc \(\left( {x;y} \right) = \left( {\frac{1}{2};1} \right)\).
Câu 13:
Đạo hàm của hàm số y = log(1 – x) bằng:
Đáp án đúng là: A
Ta có: \(\left[ {\log \left( {1 - x} \right)} \right]' = \frac{{ - 1}}{{\left( {1 - x} \right)\ln 10}} = \frac{1}{{\left( {x - 1} \right)\ln 10}}\)
Vậy ta chọn đáp án A.
Câu 14:
Cho x, y là các số thực dương và m, n là hai số thực tùy ý. Đẳng thức nào sau đây là sai?
Đáp án đúng là: A
Vì không thể nhân hai mũ khác cơ số, khác cả số mũ nên đáp án A sai
Ta chỉ có thể nhân 2 mũ có cùng cơ số
xm . xn = xm+n
Vậy ta chọn đáp án A.
Câu 15:
Hình bình hành ABCD có AC ⊥ AD và AD = 3,5; \(\widehat D = 50^\circ \). Tính diện tích ABCD.
Vì AC ⊥ AD nên tam giác ACD vuông tại A
Suy ra \(\tan \widehat {A{\rm{D}}C} = \frac{{AC}}{{A{\rm{D}}}}\)
Do đó AC = AD . tan50° = 3,5 . tan50°
Ta có \[{{\rm{S}}_{AC{\rm{D}}}} = \frac{1}{2}AC.A{\rm{D}} = \frac{1}{2}.3,5.\tan 50^\circ .3,5 = \frac{{49}}{8}.\tan 50^\circ \]
Diện tích hình hình hành ABCD là
\({S_{ABC{\rm{D}}}} = 2{{\rm{S}}_{AC{\rm{D}}}} = 2.\frac{{49}}{8}.\tan 50^\circ \approx 14,6.\)
Câu 16:
Tìm tất cả các giá trị của tham số m để hàm số y = x3 + x2 + mx + 1 đồng biến trên khoảng (–∞; +∞)
Đáp án đúng là: C
Ta có:
y’ = 3x2 + 2x + m
Xét phương trình y’ = 0
⇔ 3x2 + 2x + m = 0
Hàm số đồng biến trên R ⇔ y’ ≥ 0, ∀x
⇔ ∆’ ≤ 0 ⇔ 12 – 3m ≤ 0 \( \Leftrightarrow m \ge \frac{1}{3}\)
Vậy ta chọn đáp án C.
Câu 17:
Chứng minh bất đẳng thức sinx < x với mọi x > 0 và sinx > x với mọi x < 0.
Xét hàm số f(x) = x – sinx liên tục trên nửa khoảng \(\left[ {0;\left. {\frac{\pi }{2}} \right)} \right.\)
Đạo hàm f’ = 1 – cosx > 0 với mọi \(x \in \left( {0;\frac{\pi }{2}} \right)\)
Do đó hàm số đồng biến trên \(\left[ {0;\left. {\frac{\pi }{2}} \right)} \right.\)
Từ đó với mọi \(x \in \left( {0;\frac{\pi }{2}} \right)\) ta có:
f(x) > f(0) = 0
Suy ra x – sinx > 0; \(\forall x \in \left( {0;\frac{\pi }{2}} \right)\)
⇔ x > sinx; \(\forall x \in \left( {0;\frac{\pi }{2}} \right)\)
Với \(x \ge \frac{\pi }{2}\) thì x > 1 ≥ sinx
Vậy sinx < x với mọi x > 0
Xét hàm số f(x) = x – sinx liên tục trên nửa khoảng \(\left( {\frac{{ - \pi }}{2};\left. 0 \right]} \right.\)
Đạo hàm f’ = 1 – cosx > 0 với mọi \(x \in \left( { - \frac{\pi }{2};0} \right)\)
Do đó hàm số đồng biến trên \(\left( {\frac{{ - \pi }}{2};\left. 0 \right]} \right.\)
Từ đó với mọi \(x \in \left( { - \frac{\pi }{2};0} \right)\) ta có:
f(x) < f(0) = 0
Suy ra x – sinx < 0; \(\forall x \in \left( { - \frac{\pi }{2};0} \right)\)
⇔ x < sinx; \(\forall x \in \left( { - \frac{\pi }{2};0} \right)\)
Với \(x \le \frac{\pi }{2}\) thì \(x \le \frac{{ - \pi }}{2} < - 1 \le {\mathop{\rm s}\nolimits} {\rm{inx}}\)
Vậy sinx > x với mọi x < 0.
Câu 18:
Cho hàm số y = – x3 + 3x2 + 3mx – 1, tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên khoảng (0; +∞)
Đáp án đúng là: C
Ta có y’ = – 3x2 + 6x + 3m ≤ 0, ∀x > 0
⇔ 3m ≤ 3x2 – 6x, ∀x > 0
⇔ 3m ≤ 3(x2 – 2x + 1) – 3, ∀x > 0
⇔ 3m ≤ 3(x – 1)2 – 3, ∀x > 0
Vì 3(x – 1)2 ≥ 0 với mọi x
Nên 3(x – 1)2 – 3 ≥ –3 với mọi x
Suy ra 3x2 – 6x nhỏ nhất bằng –3 khi x = 1
Do đó 3m ≤ –3 ⇔ m ≤ –1
Vậy ta chọn đáp án C.
Câu 19:
Tính tổng: S = 12 + 22 + 32 + ... + n2.
Ta có:
n2 – n = n(n – 1)
⇔ n2 = (n – 1)n + n
Khi đó:
S = 12 + 22 + 32 + ... + n2
S = 1 + 1 . 2 + 2 . 3 + ... + (n – 1)n + n
S = [1 . 2 + 2 . 3 + ... + (n – 1)n] + (1 + 2 + ... + n)
\[{\rm{S}} = \frac{{\left( {n - 1} \right)n\left( {n + 1} \right)}}{3} + \frac{{n\left( {n + 1} \right)}}{2}\]
\[{\rm{S}} = \frac{{2\left( {n - 1} \right)n\left( {n + 1} \right) + 3n\left( {n + 1} \right)}}{6}\]
\[{\rm{S}} = \frac{{n\left( {n + 1} \right)\left( {2n - 2 + 3} \right)}}{6}\]
\[{\rm{S}} = \frac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}\].
Câu 20:
Cho tam giác ABC có cạnh a, b, c thỏa mãn bc = a2.
Chứng minh rằng sinB.sinC = sin2A và hb . hc = ha2.
• Ta có: \(\frac{{\sin {\rm{A}}}}{a} = \frac{{\sin B}}{b} = \frac{{\sin C}}{c} = 2{\rm{R}}\)
Suy ra \(a = \frac{{\sin B}}{{2{\rm{R}}}};\,\,b = \frac{{\sin {\rm{A}}}}{{2{\rm{R}}}};\,\,c = \frac{{\sin C}}{{2{\rm{R}}}}\)
Mà bc = a2
Suy ra \(\frac{{\sin B}}{{2{\rm{R}}}}.\frac{{\sin C}}{{2{\rm{R}}}} = {\left( {\frac{{\sin {\rm{A}}}}{{2{\rm{R}}}}} \right)^2}\)\( \Leftrightarrow \frac{{\sin B.\sin C}}{{4{{\rm{R}}^2}}} = \frac{{{{\sin }^2}A}}{{4{{\rm{R}}^2}}}\)
Do đó sin B . sin C = sin2A
• Ta có: \[S = \frac{1}{2}a{h_a} = \frac{1}{2}b{h_b} = \frac{1}{2}c{h_c}\]
Suy ra \[a = \frac{{2{\rm{S}}}}{{{h_a}}};b = \frac{{2{\rm{S}}}}{{{h_b}}};c = \frac{{2{\rm{S}}}}{{{h_c}}}\]
Mà bc = a2
Suy ra \[{\left( {\frac{{2{\rm{S}}}}{{{h_a}}}} \right)^2} = \frac{{2{\rm{S}}}}{{{h_b}}}.\frac{{2{\rm{S}}}}{{{h_c}}}\]
\[ \Leftrightarrow \frac{{4{{\rm{S}}^2}}}{{{h_a}^2}} = \frac{{{\rm{4}}{{\rm{S}}^2}}}{{{h_b}.{h_c}}}\]
Do đó hb . hc = ha2.
Câu 21:
Cho 4 chữ số 1, 5, 8, 9 có thể viết được mấy số có 4 chữ số khác nhau từ các chữ số trên.
Có 4 cách chọn chữ số hàng nghìn
Có 3 cách chọn chữ số hàng trăm
Có 2 cách chọn chữ số hàng chục
Có 1 cách chọn chữ số hàng đơn vị
Suy ra lập được số các số có 4 chữ số khác nhau từ các chữ số 1, 5, 8, 9, là:
4 × 3 × 2 × 1 = 24 (số)
Vậy lập được 24 số thỏa mãn yêu cầu đề bài.
Câu 22:
Tìm x biết x² – 9 + 5(x – 3) = 0.
Ta có:
x² – 9 + 5(x – 3) = 0
⇔ x² – 9 + 5x – 15 = 0
⇔ x² + 5x – 24 = 0
⇔ x² – 3x + 8x – 24 = 0
⇔ x(x – 3) + 8(x – 3) = 0
⇔ (x – 3)(x + 8) = 0
\( \Leftrightarrow \left[ \begin{array}{l}x - 3 = 0\\x + 8 = 0\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = - 8\end{array} \right.\)
Vậy x = 3 hoặc x = –8.
Câu 23:
Ta có:
(102 + 112 + 122) : (132 + 142)
= (100 + 121 + 144) : (169 + 196)
= 365 : 365 = 1.
Câu 24:
Tìm x biết (8x – 7)(8x – 5)(2x – 1)(4x – 1) = 9.
Ta có:
(8x – 7)(8x – 5)(2x – 1)(4x – 1) = 9
⇔ (8x – 7)(8x – 5)(8x – 4)(8x – 2) = 72
Đặt 8x – 5 = a
Khi đó ta có:
(a – 2)a(a + 1)(a + 3) = 72
⇔ (a2 – 2a)(a2 + 4a + 3) – 72 = 0
⇔ a4 – 4a3 + 3a2 – 2a3 – 8a2 – 6a – 72 = 0
⇔ a4 + 4a3 – 2a3 – 8a2 + 3a2 + 12a – 18a – 72 = 0
⇔ a3(a + 4) – 2a2(a + 4) + 3a(a + 4) – 18(a + 4) = 0
⇔ (a + 4)(a3 – 2a2 + 3a – 18) = 0
⇔ (a + 4)(a3 – 3a2 + a2 – 3a + 6a – 18) = 0
⇔ (a + 4)[a2(a – 3) + a(a – 3) + 6(a – 3)] = 0
⇔ (a + 4)(a – 3)(a2 + a + 6) = 0 (*)
Vì \[{{\rm{a}}^2} + a + 6 = {a^2} + 2.a.\frac{1}{2} + \frac{1}{4} + \frac{{23}}{4} = {\left( {a + \frac{1}{2}} \right)^2} + \frac{{23}}{4} > 0\]
Nên \(\left( * \right) \Leftrightarrow \left[ \begin{array}{l}a + 4 = 0\\a - 3 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}a = - 4\\a = 3\end{array} \right.\)
Suy ra \(\left[ \begin{array}{l}8{\rm{x}} - 5 = - 4\\8{\rm{x}} - 5 = 3\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}8{\rm{x}} = 1\\8{\rm{x}} = 8\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{1}{8}\\x = 1\end{array} \right.\)
Vậy x = 1 hoặc \[{\rm{x}} = \frac{1}{8}\].
Câu 25:
Trong các mệnh đề sau, mệnh đề nào đúng?
Đáp án đúng là: A
+) Với mọi số tự nhiên thì có các trường hợp sau:
n = 3k ⇒ n2 + 1 = (3k)2 + 1 chia 3 dư 1
n = 3k + 1 ⇒ n2 + 1 = (3k + 1)2 + 1 = 9k2 + 6k + 2 chia 3 dư 2
n = 3k + 2 ⇒ n2 + 1 = (3k + 2)2 + 1 = 9k2 + 12k + 5 chia 3 dư 2
Suy ra ∀ n ∈ ℕ, n2 + 1 không chia hết cho 3, mệnh đề A đúng
+) Với mọi số tự nhiên thì có các trường hợp sau:
n = 4k ⇒ n2 + 1 = (4k)2 + 1 chia 4 dư 1
n = 4k + 1 ⇒ n2 + 1 = (4k + 1)2 + 1 = 16k2 + 8k + 2 chia 4 dư 2
n = 4k + 2 ⇒ n2 + 1 = (4k + 2)2 + 1 = 16k2 + 16k + 5 chia 4 dư 1
n = 4k + 3 ⇒ n2 + 1 = (4k + 3)2 + 1 = 16k2 + 24k + 10 chia 4 dư 2
Suy ra ∀ n ∈ ℕ, n2 + 1 không chia hết cho 4, do đó mệnh đề D sai.
+) Ta có: x = – 4 < 3, nhưng |x| = | – 4| = 4 > 3, suy ra mệnh đề B sai
+) Với x = 1, ta có (x – 1)2 = (1 – 1)2 = 0 và x – 1 = 1 – 1 = 0, do đó mệnh đề C sai
Vậy ta chọn đáp án A.
Câu 26:
Tính \(\frac{{{x^6} - {y^6}}}{{{x^4} - {y^4} - {x^3}y + x{y^3}}}\).
Ta có:
\(\frac{{{x^6} - {y^6}}}{{{x^4} - {y^4} - {x^3}y + x{y^3}}}\)
\( = \frac{{{{\left( {{x^3}} \right)}^2} - {{\left( {{y^3}} \right)}^2}}}{{{x^3}(x - y) + {y^3}(x - y)}}\)
\( = \frac{{\left( {{x^3} + {y^3}} \right)\left( {{x^3} - {y^3}} \right)}}{{\left( {{x^3} + {y^3}} \right)(x - y)}}\)\( = \frac{{{x^3} - {y^3}}}{{x - y}}\)
\( = \frac{{\left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right)}}{{x - y}}\)\( = {x^2} + xy + {y^2}\)
Vậy \(\frac{{{x^6} - {y^6}}}{{{x^4} - {y^4} - {x^3}y + x{y^3}}} = {x^2} + xy + {y^2}\).
Câu 27:
Cho a là số thực dương, a ≠ 1 và \(P = {\log _{\sqrt[3]{a}}}{a^3}\). Mệnh đề nào dưới đây đúng?
Đáp án đúng là: C
Ta có:
\(P = {\log _{\sqrt[3]{a}}}{a^3} = {\log _{{a^{\frac{1}{3}}}}}{a^3} = 3.3{\log _a}a = 9\,\,\left( {a > 0,a \ne 1} \right)\)
Vậy ta chọn đáp án C.
Câu 28:
Cho Ax, By là các tiếp tuyến của \(\left( {O;\frac{{AB}}{2}} \right)\). Tiếp tuyến tại M của (O) cắt Ax, By, AB lần lượt tại C, D, E. AD và BC cắt nhau tại N
a) Tính AC. BD theo AB
b) Chứng minh MN vuông góc AB
c) So sánh 2 tỉ số \(\frac{{CM}}{{CE}};\frac{{DM}}{{DE}}\).
d) Chứng minh rằng đường thẳng EN đi qua trung điểm của các đoạn thẳng AC, BD.a) Xét (O) có CA, CM là hai tiếp tuyến cắt nhau tại C
Suy ra CA = CM, OC là tia phân giác của \(\widehat {AOM}\)
Do đó \(\widehat {COM} = \frac{1}{2}\widehat {AOM}\)
Xét (O) có DB, DM là hai tiếp tuyến cắt nhau tại D
Suy ra DB = DM, OD là tia phân giác của \(\widehat {BOM}\)
Do đó \(\widehat {DOM} = \frac{1}{2}\widehat {BOM}\)
Ta có: \(\widehat {COD} = \widehat {COM} + \widehat {DOM} = \frac{1}{2}\widehat {AOM} + \frac{1}{2}\widehat {BOM} = \frac{1}{2}\widehat {AOB} = \frac{1}{2}.180^\circ = 90^\circ \)
Do đó tam giác COD vuông tại O
Mà OM ⊥ CD
Suy ra OM2 = CM . DM (hệ thức lượng trong tam giác vuông)
Mà CA = CM, DB = DM, \(OM = \frac{1}{2}AB\)
Suy ra \(CA.DB = \frac{{A{B^2}}}{4}\)
b) Vì AC // BD nên \(\frac{{AC}}{{B{\rm{D}}}} = \frac{{AN}}{{N{\rm{D}}}} = \frac{{CN}}{{NB}}\)
Mà CA = CM, DB = DM (chứng minh câu a)
Suy ra \(\frac{{CM}}{{DM}} = \frac{{AN}}{{N{\rm{D}}}}\)
Xét tam giác ACD có \(\frac{{CM}}{{DM}} = \frac{{AN}}{{N{\rm{D}}}}\)
Suy ra MN // CA
Mà AC ⊥ AB
Do đó MN ⊥ AB
c) Xét tam giác ACE vuông tại A có
\[\sin \widehat E = \frac{{CA}}{{CE}}\]
Mà CA = CM
Suy ra \[\sin \widehat E = \frac{{CM}}{{CE}}\] (1)
Xét tam giác EBD vuông tại B có
\[\sin \widehat E = \frac{{B{\rm{D}}}}{{DE}}\]
Mà BD = DM
Suy ra \[\sin \widehat E = \frac{{DM}}{{DE}}\] (2)
Từ (1) và (2) suy ra \(\frac{{CM}}{{CE}} = \frac{{DM}}{{DE}}\)
d) Gọi giao điểm của MN với AB là H
Giao điểm của AN với AC và BD lần lượt là I và K
Xét (O) đường kính AB có MN ⊥ AO
Mà MN cắt AO tại H
Suy ra H là trung điểm của AO
Xét tam giác DBE có MH // BD
Suy ra \(\frac{{MN}}{{DK}} = \frac{{NH}}{{BK}}\)
Do đó \(\frac{{MN}}{{NH}} = \frac{{DK}}{{BK}}\) (3)
Gọi giao điểm của MB và HD là E
Xét tam giác DKE có MN // KD
Suy ra \(\frac{{NH}}{{DK}} = \frac{{NE}}{{EK}}\)
Xét tam giác BKE có MN // BK
Suy ra \(\frac{{NM}}{{BK}} = \frac{{NE}}{{EK}}\)
Mà \(\frac{{NH}}{{DK}} = \frac{{NE}}{{EK}}\)
Do đó \(\frac{{NH}}{{DK}} = \frac{{MN}}{{BK}}\)
Hay \(\frac{{NM}}{{MH}} = \frac{{BK}}{{DK}}\) (4)
Từ (3) và (4) suy ra \(\frac{{DK}}{{BK}} = \frac{{BK}}{{DK}}\)
Do đó DK = BK, MN = NH
Hay EN đi qua trung điểm K của đoạn thẳng BD
Xét tam giác EHM có CA // MH
Suy ra \(\frac{{CI}}{{MN}} = \frac{{AI}}{{NH}}\)
Mà MN = NH
Suy ra CI = AI
Hay EN đi qua trung điểm I của đoạn thẳng AC
Vậy EN đi qua trung điểm của các đoạn thẳng AC, BD.
Câu 29:
Phân tích đa thức thành nhân tử: (x – 1)(x – 2)(x + 7)(x + 8) + 8.
Ta có:
(x – 1)(x – 2)(x + 7)(x + 8) + 8
= (x – 1)(x + 7)(x – 2)(x + 8) + 8
= (x2 + 6x – 7)(x2 + 6x – 16) + 8
Đặt x2 + 6x – 7 = t, ta được
t(t – 9) + 8 = t2 – 9t + 8 = t2 – 8t – t + 8 = t(t – 8) – (t – 8) = (t – 8)(t – 1)
Thay t = x2 + 6x – 7 ta có
(x2 + 6x – 7 – 8)( x2 + 6x – 7 – 1) = (x2 + 6x – 15)( x2 + 6x – 8)
Vậy (x – 1)(x – 2)(x + 7)(x + 8) + 8 = (x2 + 6x – 15)( x2 + 6x – 8).
Câu 30:
Khai triển (x – 2)2.
Ta có:
(x – 2)2 = x2 – 2 . x . 2 + 22 = x2 – 4x + 4
Vậy (x – 2)2 = x2 – 4x + 4.
Câu 31:
Chứng minh với ab ≥ 1 thì \(\frac{1}{{1 + {a^2}}} + \frac{1}{{1 + {b^2}}} \ge \frac{2}{{1 + ab}}\).
Ta có: \(\frac{1}{{1 + {a^2}}} + \frac{1}{{1 + {b^2}}} \ge \frac{2}{{1 + ab}}\)
\( \Leftrightarrow \frac{1}{{1 + {a^2}}} + \frac{1}{{1 + {b^2}}} - \frac{2}{{1 + ab}} \ge 0\)
\( \Leftrightarrow \left( {\frac{1}{{1 + {a^2}}} - \frac{1}{{1 + ab}}} \right) + \left( {\frac{1}{{1 + {b^2}}} - \frac{1}{{1 + ab}}} \right) \ge 0\)
\( \Leftrightarrow \frac{{1 + ab - 1 - {a^2}}}{{\left( {1 + {a^2}} \right)\left( {1 + ab} \right)}} + \frac{{1 + ab - 1 - {b^2}}}{{\left( {1 + {b^2}} \right)\left( {1 + ab} \right)}} \ge 0\)
\( \Leftrightarrow \frac{{ab - {a^2}}}{{\left( {1 + {a^2}} \right)\left( {1 + ab} \right)}} + \frac{{ab - {b^2}}}{{\left( {1 + {b^2}} \right)\left( {1 + ab} \right)}} \ge 0\)
\( \Leftrightarrow \frac{{\left( {ab - {a^2}} \right)\left( {1 + {b^2}} \right) + \left( {1 + {a^2}} \right)\left( {ab - {b^2}} \right)}}{{\left( {1 + {a^2}} \right)\left( {1 + ab} \right)\left( {1 + {b^2}} \right)}} \ge 0\)
\( \Leftrightarrow \frac{{a\left( {b - a} \right)\left( {1 + {b^2}} \right) + \left( {1 + {a^2}} \right)b\left( {a - b} \right)}}{{\left( {1 + {a^2}} \right)\left( {1 + ab} \right)\left( {1 + {b^2}} \right)}} \ge 0\)
\( \Leftrightarrow \frac{{\left( {b - a} \right)\left[ {a\left( {1 + {b^2}} \right) - b\left( {1 + {a^2}} \right)} \right]}}{{\left( {1 + {a^2}} \right)\left( {1 + ab} \right)\left( {1 + {b^2}} \right)}} \ge 0\)
\( \Leftrightarrow \frac{{\left( {b - a} \right)\left[ {a + a{b^2} - b - {a^2}b} \right]}}{{\left( {1 + {a^2}} \right)\left( {1 + ab} \right)\left( {1 + {b^2}} \right)}} \ge 0\)
\( \Leftrightarrow \frac{{\left( {b - a} \right)\left[ {\left( {a - b} \right) - ab\left( {a - b} \right)} \right]}}{{\left( {1 + {a^2}} \right)\left( {1 + ab} \right)\left( {1 + {b^2}} \right)}} \ge 0\)
\( \Leftrightarrow \frac{{{{\left( {b - a} \right)}^2}\left( {ab - 1} \right)}}{{\left( {1 + {a^2}} \right)\left( {1 + ab} \right)\left( {1 + {b^2}} \right)}} \ge 0\)
Vì ab ≥ 1 nên ab – 1 ≥ 0
Mà (b – a)2 ≥ 0
Suy ra (b – a)2(ab – 1) ≥ 0
Vì (a2 + 1) > 0, (b2 + 1) > 0, (ab + 1) > 0
Nên (a2 + 1)(b2 + 1)(ab + 1) > 0
Suy ra \(\frac{{{{\left( {b - a} \right)}^2}\left( {ab - 1} \right)}}{{\left( {1 + {a^2}} \right)\left( {1 + ab} \right)\left( {1 + {b^2}} \right)}} \ge 0\) với mọi a, b, ab ≥ 1
Vậy \(\frac{1}{{1 + {a^2}}} + \frac{1}{{1 + {b^2}}} \ge \frac{2}{{1 + ab}}\).
Câu 32:
Cho a, b, c là 3 cạnh trong tam giác. Chứng minh rằng:
\(\frac{a}{{b + c - a}} + \frac{b}{{a + c - b}} + \frac{c}{{a + b - c}} \ge 3\).
Đặt x = b + c – a
y = a + c – b
z = a + b – c
Suy ra \(\left\{ \begin{array}{l}x + z = b + c - a + a + b - c = 2b\\x + y = b + c - a + a + c - b = 2c\\y + z = a + c - b + a + b - c = 2{\rm{a}}\end{array} \right.\)
Ta có: \(2A = \frac{{y + z}}{x} + \frac{{x + z}}{y} + \frac{{x + y}}{z}\)
\( = \frac{y}{x} + \frac{z}{x} + \frac{x}{y} + \frac{z}{y} + \frac{x}{z} + \frac{y}{z}\)
\( = \left( {\frac{y}{x} + \frac{x}{y}} \right) + \left( {\frac{z}{y} + \frac{y}{z}} \right) + \left( {\frac{x}{z} + \frac{z}{x}} \right)\)
Áp dụng bất đẳng thức Cô – si ta có:
\(\begin{array}{l}\left( {\frac{y}{x} + \frac{x}{y}} \right) \ge 2\sqrt {\frac{y}{x}.\frac{x}{y}} = 2\\\left( {\frac{z}{y} + \frac{y}{z}} \right) \ge 2\sqrt {\frac{z}{y}.\frac{y}{z}} = 2\\\left( {\frac{x}{z} + \frac{z}{x}} \right) \ge 2\sqrt {\frac{z}{x}.\frac{x}{z}} = 2\end{array}\)
Suy ra:
\(\left( {\frac{y}{x} + \frac{x}{y}} \right) + \left( {\frac{z}{y} + \frac{y}{z}} \right) + \left( {\frac{x}{z} + \frac{z}{x}} \right) \ge 6\)
\( \Leftrightarrow 2A = \frac{{y + z}}{x} + \frac{{x + z}}{y} + \frac{{x + y}}{z} \ge 6\)
\( \Leftrightarrow 2A = \frac{{2{\rm{a}}}}{{b + c - a}} + \frac{{2b}}{{a + c - b}} + \frac{{2c}}{{a + b - c}} \ge 6\)
\( \Leftrightarrow A = \frac{{\rm{a}}}{{b + c - a}} + \frac{b}{{a + c - b}} + \frac{c}{{a + b - c}} \ge 3\)
Vậy \(\frac{a}{{b + c - a}} + \frac{b}{{a + c - b}} + \frac{c}{{a + b - c}} \ge 3\).
Câu 33:
Cho ngũ giác ABCDE. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DE. Gọi I và J lần lượt là trung điểm của MP và NQ. Chứng minh IJ song song với AE và \[{\rm{IJ}} = \frac{1}{4}A{\rm{E}}\].
Gọi F là trung điểm của AD
Xét tam giác ABC có
M, N lần lượt là trung điểm của AB, BC
Suy ra MN là đường trung bình
Do đó \(\left\{ \begin{array}{l}MN//AC\\MN = \frac{1}{2}AC\end{array} \right.\) (1)
Xét tam giác ADC có
P, F lần lượt là trung điểm của CD, AD
Suy ra PF là đường trung bình
Do đó \(\left\{ \begin{array}{l}PF//AC\\PF = \frac{1}{2}AC\end{array} \right.\) (2)
Từ (1) và (2) suy ra MN // PF và MN = PF
Do đó MNPF là hình bình hành
Suy ra MP cắt FN tại trung điểm của mỗi đường
Mà I là trung điểm của MP
Suy ra I là trung điểm của FN
Xét tam giác NFQ có
I và J lần lượt là trung điểm của FN và NQ
Suy ra IJ là đường trung bình
Do đó IJ // QF và \[{\rm{IJ}} = \frac{1}{2}FQ\]
Xét tam giác AED có
F và Q lần lượt là trung điểm của AD và ED
Suy ra FQ là đường trung bình
Do đó AE // QF và \[FQ = \frac{1}{2}A{\rm{E}}\]
Mà IJ // QF (chứng minh trên)
Suy ra IJ // AE
Ta có \[{\rm{IJ}} = \frac{1}{2}FQ = \frac{1}{2}.\frac{1}{2}A{\rm{E}} = \frac{1}{4}A{\rm{E}}\]
Vậy IJ // AE và \[{\rm{IJ}} = \frac{1}{4}A{\rm{E}}\].
Câu 34:
Cho tam giác ABC vuông tại A, đường cao AH. Chứng minh:
a) AB2 = BH . BC
b) AC2 = CH . BC
c) \(\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}}\).
a) Xét tam giác ABC và tam giác HBA có:
\(\widehat {BAC} = \widehat {AHB} = 90^\circ \)
\(\widehat B\) là góc chung
Suy ra (g.g)
Do đó \(\frac{{AB}}{{BH}} = \frac{{BC}}{{AB}}\)
Suy ra AB2 = BH . BC
b) Xét tam giác ABC và tam giác HAC có:
\(\widehat {BAC} = \widehat {AHC} = 90^\circ \)
\(\widehat C\) là góc chung
Suy ra (g.g)
Do đó \(\frac{{AC}}{{CH}} = \frac{{BC}}{{AC}}\)
Suy ra AC2 = BC . CH
c) Vì (chứng minh câu a)
Nên \(\frac{{AH}}{{AC}} = \frac{{AB}}{{BC}}\)
Suy ra \(\frac{{A{H^2}}}{{A{C^2}}} = \frac{{A{B^2}}}{{B{C^2}}}\) (1)
Vì (chứng minh câu b)
Nên \(\frac{{BC}}{{AC}} = \frac{{AB}}{{AH}}\)
Suy ra \(\frac{{A{H^2}}}{{A{B^2}}} = \frac{{A{C^2}}}{{B{C^2}}}\) (2)
Từ (1) và (2) suy ra \(\frac{{A{H^2}}}{{A{C^2}}} + \frac{{A{H^2}}}{{A{B^2}}} = \frac{{A{B^2}}}{{B{C^2}}} + \frac{{A{C^2}}}{{B{C^2}}} = \frac{{A{B^2} + A{C^2}}}{{B{C^2}}}\)
Mà tam giác ABC vuông tại A nên BC2 = AB2 + AC2
Do đó \(\frac{{A{H^2}}}{{A{C^2}}} + \frac{{A{H^2}}}{{A{B^2}}} = 1\)
Suy ra \(\frac{1}{{A{C^2}}} + \frac{1}{{A{B^2}}} = \frac{1}{{A{H^2}}}\)
Vậy \(\frac{1}{{A{C^2}}} + \frac{1}{{A{B^2}}} = \frac{1}{{A{H^2}}}\).
Câu 35:
Chứng minh với x, y, z dương ta có \(\frac{{{x^3}}}{{yz}} + \frac{{{y^3}}}{{xz}} + \frac{{{z^3}}}{{xy}} \ge x + y + z\).
Ta có:
\(\frac{{{x^3}}}{{yz}} + \frac{{{y^3}}}{{xz}} + \frac{{{z^3}}}{{xy}} = \frac{{{x^4}}}{{xyz}} + \frac{{{y^4}}}{{xyz}} + \frac{{{z^4}}}{{xyz}} = \frac{{{x^4} + {y^4} + {z^4}}}{{xyz}}\)
Áp dụng bất đẳng thức \({a^2} + {b^2} + {c^2} \ge \frac{{{{\left( {a + b + c} \right)}^2}}}{3}\) ta có
\[{{\rm{x}}^4} + {y^4} + {z^4} \ge \frac{{{{\left( {{x^2} + {y^2} + {z^2}} \right)}^2}}}{3}\]
Suy ra \(\frac{{{x^4} + {y^4} + {z^4}}}{{xyz}} \ge \frac{{{{\left( {{x^2} + {y^2} + {z^2}} \right)}^2}}}{{3xyz}} \ge \frac{{{{\left[ {\frac{{{{\left( {x + y + z} \right)}^2}}}{3}} \right]}^2}}}{{\frac{{{{\left( {x + y + z} \right)}^3}}}{{3.3}}}}\)
\(\frac{{{x^4} + {y^4} + {z^4}}}{{xyz}} \ge \frac{{{{\left( {x + y + z} \right)}^4}}}{{{{\left( {x + y + z} \right)}^3}}} = x + y + z\)
Do đó \(\frac{{{x^3}}}{{yz}} + \frac{{{y^3}}}{{xz}} + \frac{{{z^3}}}{{xy}} \ge x + y + z\)
Vậy \(\frac{{{x^3}}}{{yz}} + \frac{{{y^3}}}{{xz}} + \frac{{{z^3}}}{{xy}} \ge x + y + z\).
Câu 36:
Với a, b, c là các số dương, chứng minh rằng
\(\left( {a + b + c} \right)\left( {\frac{1}{a} + \frac{1}{b} + \frac{1}{c}} \right) \ge 9\).
Ta có:
\(\left( {a + b + c} \right)\left( {\frac{1}{a} + \frac{1}{b} + \frac{1}{c}} \right) = 1 + \frac{a}{b} + \frac{a}{c} + 1 + \frac{b}{a} + \frac{b}{c} + 1 + \frac{c}{a} + \frac{c}{b}\)
\( = 3 + \left( {\frac{a}{b} + \frac{b}{a}} \right) + \left( {\frac{c}{b} + \frac{b}{c}} \right) + \left( {\frac{a}{c} + \frac{c}{a}} \right)\)
Áp dụng bất đẳng thức Cô – si ta có
\(\frac{a}{b} + \frac{b}{a} \ge 2\sqrt {\frac{a}{b}.\frac{b}{a}} = 2\)
\(\frac{c}{b} + \frac{b}{c} \ge 2\sqrt {\frac{c}{b}.\frac{b}{c}} = 2\)
\(\frac{a}{c} + \frac{c}{a} \ge 2\sqrt {\frac{a}{c}.\frac{c}{a}} = 2\)
Suy ra \(\left( {a + b + c} \right)\left( {\frac{1}{a} + \frac{1}{b} + \frac{1}{c}} \right) \ge 3 + 2 + 2 = 9\)
Vậy \(\left( {a + b + c} \right)\left( {\frac{1}{a} + \frac{1}{b} + \frac{1}{c}} \right) \ge 9\).
Câu 37:
Tìm giá trị nhỏ nhất của x2 + 3x + 4.
Ta có: x2 + 3x + 4
\( = \left( {{x^2} + 2.x.\frac{3}{2} + \frac{9}{4}} \right) + \frac{7}{4}\)
\( = {\left( {x + \frac{3}{2}} \right)^2} + \frac{7}{4}\)
Vì \({\left( {x + \frac{3}{2}} \right)^2} \ge 0;\forall x\)
Nên \({\left( {x + \frac{3}{2}} \right)^2} + \frac{7}{4} \ge \frac{7}{4};\forall x\)
Dấu “ = ” xảy ra khi \[{\rm{x}} + \frac{3}{2} = 0 \Leftrightarrow x = \frac{{ - 3}}{2}\]
Vậy giá trị nhỏ nhất của x2 + 3x + 4 là \(\frac{7}{4}\) khi \[x = \frac{{ - 3}}{2}\].
Câu 38:
Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:
Hàm số y = 3f(x + 2) – x3 + 3x đồng biến trên khoảng nào dưới đây?
Đáp án đúng là: C
Ta có: y’ > 0 ⇔ 3f’(x + 2) – 3x2 + 3 > 0
⇔ 3f’(x + 2) > 3x2 – 3
⇔ f’(x + 2) > x2 – 1
Đặt t = x + 2, suy ra x = t – 2.
Khi đó f’(t) > (t – 2)2 – 1
Chọn t sao cho \(\left\{ \begin{array}{l}{\left( {t - 2} \right)^2} - 1 < 0\\f'\left( t \right) > 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l} - 1 < t - 2 < 1\\t \in \left( {1;2} \right) \cup \left( {2;3} \right) \cup \left( {4; + \infty } \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1 < t < 3\\t \in \left( {1;2} \right) \cup \left( {2;3} \right) \cup \left( {4; + \infty } \right)\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}1 < t < 2\\2 < t < 3\end{array} \right. \Rightarrow \left[ \begin{array}{l}1 < x + 2 < 2\\2 < x + 2 < 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - 1 < x < 0\\0 < x < 1\end{array} \right.\)
Suy ra hàm số đã cho đồng biến trên khoảng (–1; 0) và (0; 1).
Vậy ta chọn đáp án C.
Câu 39:
Tổng các nghiệm của phương trình 3x+1 + 31-x = 10.
Đáp án đúng là: D
Ta có:
\[{3^{x + 1}} + {3^{1 - x}} = 10\]
\( \Leftrightarrow {3.3^x} + \frac{3}{{{3^x}}} = 10\)
\( \Leftrightarrow 3.{\left( {{3^x}} \right)^2} + 3 = {10.3^x}\)
\( \Leftrightarrow 3.{\left( {{3^x}} \right)^2} - {10.3^x} + 3 = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}{3^x} = 3\\{3^x} = \frac{1}{3}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 1\end{array} \right.\)
Tổng các nghiệm của phương trình là: 1 + (–1) = 0.
Vậy ta chọn đáp án D.
Câu 40:
Rút gọn các phân thức sau:
a) \(\frac{{{y^3} - {x^3}}}{{{x^3} - 3{{\rm{x}}^2}y + 3{\rm{x}}{y^2} - {y^3}}}\)
b) \(\frac{{{x^5} + x + 1}}{{{x^3} + {x^2} + x}}\)
c) \(\frac{{2{{\rm{x}}^2} - x - 3}}{{{x^2} - 4x - 5}}\).
a) Ta có:
\(\frac{{{y^3} - {x^3}}}{{{x^3} - 3{{\rm{x}}^2}y + 3{\rm{x}}{y^2} - {y^3}}}\)
\( = \frac{{(y - x)\left( {{y^2} + xy + {x^2}} \right)}}{{{{(x - y)}^3}}}\)
\( = - \frac{{{x^2} + xy + {y^2}}}{{{{\left( {x - y} \right)}^2}}}\)
b) Ta có: \(\frac{{{x^5} + x + 1}}{{{x^3} + {x^2} + x}}\)
\( = \frac{{\left( {{x^5} - {x^2}} \right) + {x^2} + x + 1}}{{x\left( {{x^2} + x + 1} \right)}}\)
\( = \frac{{{x^2}\left( {{x^3} - 1} \right) + \left( {{x^2} + x + 1} \right)}}{{x\left( {{x^2} + x + 1} \right)}}\)
\( = \frac{{{x^2}(x - 1)\left( {{x^2} + x + 1} \right) + \left( {{x^2} + x + 1} \right)}}{{x\left( {{x^2} + x + 1} \right)}}\)
\( = \frac{{\left( {{x^2} + x + 1} \right)\left( {{x^3} - {x^2} + 1} \right)}}{{x\left( {{x^2} + x + 1} \right)}}\)
\( = \frac{{{x^3} - {x^2} + 1}}{x}\)
c) Ta có:
\(\frac{{2{{\rm{x}}^2} - x - 3}}{{{x^2} - 4{\rm{x}} - 5}}\)
\( = \frac{{2{x^2} + 2x - 3x - 3}}{{{x^2} + x - 5x - 5}}\)
\( = \frac{{2x\left( {x + 1} \right) - 3\left( {x + 1} \right)}}{{x\left( {x + 1} \right) - 5\left( {x + 1} \right)}}\)
\( = \frac{{\left( {x + 1} \right)\left( {2x - 3} \right)}}{{\left( {x + 1} \right)\left( {x - 5} \right)}}\)
\( = \frac{{2x - 3}}{{x - 5}}\)
Câu 41:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB.
a) Tìm giao tuyến của (SAC) và (SBD)
b) Tìm giao điểm DN với (SAC)
c) Chứng minh MN // (SCD).
a) Gọi giao điểm của AC và DB là O
Vì O ∈ AC ⊂ (SAC) nên O ∈ (SAC)
O ∈ BD ⊂ (SBD) nên O ∈ (SBD)
Suy ra O ∈ (SAC) ∩ (SBD)
Mà S ∈ (SAC) ∩ (SBD)
Suy ra SO ∈ (SAC) ∩ (SBD)
b) Gọi I là giao điểm của SO và DN
Ta có:
DN ⊂ (SBD)
SO = (SAC) ∩ (SBD)
Suy ra I = DN ∩ (SAC)
c) Xét tam giác SAB có M, N lần lượt là trung điểm của SA, SB
Suy ra MN là đường trung bình
Do đó MN // AB
Mà AB // CD (vì ABCD là hình bình hành)
Suy ra MN // CD
Lại có CD ⊂ (SCD)
Do đó MN // (SCD)
Vậy MN // (SCD).
Câu 42:
Mệnh đề nào sau đây đúng ?
Đáp án đúng là: A
Ta có vectơ \(\overrightarrow 0 \) cùng hướng với mọi vectơ nên nó cùng phương với mọi vectơ
Vậy ta chọn đáp án A.
Câu 43:
Phân tích đa thức sau thành nhân tử bằng phương pháp nhóm hạng tử:
x2 – 2x – 4y2 – 4y.
Ta có:
x2 – 2x – 4y2 – 4y
= (x2 – 4y2) – (2x + 4y)
= (x – 2y)(x + 2y) – 2(x + 2y)
= (x + 2y)(x – 2y – 2)
Vậy x2 – 2x – 4y2 – 4y = (x + 2y)(x – 2y – 2).
Câu 44:
Phân tích đa thức thành nhân tử: x3 – 7x – 6.
Ta có: x3 – 7x – 6
= x3 – x2 + x2 – x – 6x – 6
= x2(x – 1) + x(x – 1) – 6(x + 1)
= (x – 1)(x2 + x) – 6(x + 1)
= (x – 1)x(x + 1) – 6(x + 1)
= (x + 1)(x2 – x – 6)
= (x + 1)(x2 – 3x + 2x – 6)
= (x + 1)[x(x – 3) + 2(x – 6)]
= (x + 1)(x – 3)(x + 2)
Vậy x3 – 7x – 6 = (x + 1)(x – 3)(x + 2).
Câu 45:
Chứng minh \(\frac{1}{{1 + {a^3}}} + \frac{1}{{1 + {b^3}}} + \frac{1}{{1 + {c^3}}} \ge \frac{3}{{1 + abc}}\) với a, b, c ≥ 1.
Ta có:
\(\frac{1}{{1 + {a^3}}} + \frac{1}{{1 + {b^3}}} + \frac{1}{{1 + {c^3}}} \ge \frac{3}{{1 + abc}}\)
\( \Leftrightarrow \frac{1}{{1 + {a^3}}} + \frac{1}{{1 + {b^3}}} + \frac{1}{{1 + {c^3}}} + \frac{1}{{1 + abc}} \ge \frac{4}{{1 + abc}}\)
Xét \(\frac{1}{{1 + {x^2}}} + \frac{1}{{1 + {y^2}}} \ge \frac{2}{{1 + xy}}\) với x, y ≥ 1
\( \Leftrightarrow \frac{1}{{1 + {x^2}}} + \frac{1}{{1 + {y^2}}} - \frac{2}{{1 + xy}} \ge 0\)
\( \Leftrightarrow \frac{{\left( {1 + {y^2}} \right)\left( {1 + xy} \right) + \left( {1 + {x^2}} \right)\left( {1 + xy} \right) - 2\left( {1 + {x^2}} \right)\left( {1 + {y^2}} \right)}}{{\left( {1 + {x^2}} \right)\left( {1 + {y^2}} \right)\left( {1 + xy} \right)}} \ge 0\)
\( \Leftrightarrow \frac{{1 + xy + {y^2} + x{y^3} + 1 + xy + {x^2} + {x^3}y - 2 - 2{{\rm{x}}^2} - 2{y^2} - 2{x^2}{y^2}}}{{\left( {1 + {x^2}} \right)\left( {1 + {y^2}} \right)\left( {1 + xy} \right)}} \ge 0\)
\( \Leftrightarrow \frac{{x{y^3} + 2xy + {x^3}y - {{\rm{x}}^2} - {y^2} - 2{x^2}{y^2}}}{{\left( {1 + {x^2}} \right)\left( {1 + {y^2}} \right)\left( {1 + xy} \right)}} \ge 0\)
\( \Leftrightarrow \frac{{xy\left( {{y^2} - 2{\rm{x}}y + {x^2}} \right) - \left( {{y^2} - 2{\rm{x}}y + {x^2}} \right)}}{{\left( {1 + {x^2}} \right)\left( {1 + {y^2}} \right)\left( {1 + xy} \right)}} \ge 0\)
\( \Leftrightarrow \frac{{{{\left( {x - y} \right)}^2}\left( {xy - 1} \right)}}{{\left( {1 + {x^2}} \right)\left( {1 + {y^2}} \right)\left( {1 + xy} \right)}} \ge 0\)
Vì x, y ≥ 1 nên xy – 1 ≥ 0
Mà (x – y)2 ≥ 0, 1 + x2 > 0, 1 + y2 > 0, xy + 1 > 0
Suy ra \(\frac{{{{\left( {x - y} \right)}^2}\left( {xy - 1} \right)}}{{\left( {1 + {x^2}} \right)\left( {1 + {y^2}} \right)\left( {1 + xy} \right)}} \ge 0\) với mọi x, y ≥ 1
Do đó \(\frac{1}{{1 + {x^2}}} + \frac{1}{{1 + {y^2}}} \ge \frac{2}{{1 + xy}}\) với x, y ≥ 1
Áp dụng bất đẳng thức trên ta có:
\(\frac{1}{{1 + {a^3}}} + \frac{1}{{1 + {b^3}}} + \frac{1}{{1 + {c^3}}} + \frac{1}{{1 + abc}} \ge \frac{2}{{1 + \sqrt {{a^3}{b^3}} }} + \frac{2}{{1 + \sqrt {ab{c^4}} }}\)
\( \Leftrightarrow \frac{1}{{1 + {a^3}}} + \frac{1}{{1 + {b^3}}} + \frac{1}{{1 + {c^3}}} + \frac{1}{{1 + abc}} \ge \frac{4}{{1 + \sqrt {{a^3}{b^3}\sqrt {ab{c^4}} } }}\)
\( \Leftrightarrow \frac{1}{{1 + {a^3}}} + \frac{1}{{1 + {b^3}}} + \frac{1}{{1 + {c^3}}} + \frac{1}{{1 + abc}} \ge \frac{4}{{1 + abc}}\)
Dấu “ = ” xảy ra khi a = b = c = 1
Vậy \(\frac{1}{{1 + {a^3}}} + \frac{1}{{1 + {b^3}}} + \frac{1}{{1 + {c^3}}} \ge \frac{3}{{1 + abc}}\) với a, b, c ≥ 1.
Câu 46:
Cho A = 5n+2 + 26 . 5n + 82n + 1. Chứng minh A ⋮ 59.
Ta có:
A = 5n+2 + 26 . 5n + 82n + 1
A = 5n . 52 + 26 . 5n + 82n . 8
A = 5n . 25 + 26 . 5n + 82n . 8
A = 5n (25 + 26) + 82n . 8
A = 51 . 5n + 64n . 8
Vì 64 : 59 dư 5 nên 64n : 59 dư 5n
Suy ra 51 . 5n + 64n . 8 chia 59 dư
51 . 5n + 5n . 8 = 5n(51 + 8) = 59 . 5n
Mà 59 . 5n ⋮ 59
Suy ra A ⋮ 59
Vậy A ⋮ 59.
Câu 47:
Cho x > 0, y > 0 và x + y = 1. Chứng minh: \(8\left( {{x^4} + {y^4}} \right) + \frac{1}{{xy}} \ge 5\).
Ta có:
(a – b)2 ≥ 0
⇔ a2 – 2ab + b2 ≥ 0
⇔ a2 + b2 ≥ 2ab
⇔ 2(a2 + b2) ≥ 2ab + a2 + b2
⇔ 2(a2 + b2) ≥ (a + b)2
\( \Leftrightarrow {a^2} + {b^2} \ge \frac{{{{\left( {a + b} \right)}^2}}}{2}\)
Áp dụng bất đẳng thức trên ta có
\(8\left( {{x^4} + {y^4}} \right) \ge 8\left[ {\frac{{{{\left( {{x^2} + {y^2}} \right)}^2}}}{2}} \right]\)
\( \Leftrightarrow 8\left( {{x^4} + {y^4}} \right) \ge 4{\left( {{x^2} + {y^2}} \right)^2}\)
\( \Leftrightarrow 8\left( {{x^4} + {y^4}} \right) \ge 4{\left[ {\frac{{\left( {x + {y^2}} \right)}}{2}} \right]^2} = 1\) (vì x + y = 1)
Lại có (x + y)2 ≥ 4xy
⇔ 1 ≥ 4xy (vì x + y = 1)
\( \Leftrightarrow xy \le \frac{1}{4}\)
\( \Leftrightarrow \frac{1}{{xy}} \ge 4\)
Suy ra \(8\left( {{x^4} + {y^4}} \right) + \frac{1}{{xy}} \ge 1 + 4 = 5\)
Vậy \(8\left( {{x^4} + {y^4}} \right) + \frac{1}{{xy}} \ge 5\).
Câu 48:
Chứng minh rằng a4 + b4 + c4 ≥ abc(a + b + c).
Áp dụng bất đẳng thức Cô – si cho 4 số ta có:
\({a^4} + {a^4} + {b^4} + {c^4} \ge 4\sqrt[4]{{{a^4}.{a^4}.{b^4}.{c^4}}} = 4{{\rm{a}}^2}bc\)
\({a^4} + {b^4} + {b^4} + {c^4} \ge 4\sqrt[4]{{{a^4}.{b^4}.{b^4}.{c^4}}} = 4{\rm{a}}{b^2}c\)
\({a^4} + {b^4} + {c^4} + {c^4} \ge 4\sqrt[4]{{{a^4}.{b^4}.{c^4}.{c^4}}} = 4{\rm{a}}b{c^2}\)
Cộng vế của các bất đẳng thức ta có:
4(a4 + b4 + c4) ≥ 4(a2bc + ab2c + abc2)
⇔ a4 + b4 + c4 ≥ abc(a + b + c)
Vậy a4 + b4 + c4 ≥ abc(a + b + c).