Tìm giá trị nhỏ nhất của hàm số \(y = 3{\rm{x}} + \frac{4}{{{x^2}}}\) trên khoảng (0; +∞).
Ta có :
\(y' = 3 - \frac{8}{{{x^3}}}\)
\(\begin{array}{l}y' = 0 \Leftrightarrow 3 - \frac{8}{{{x^3}}} = 0\\ \Leftrightarrow x = \frac{2}{{\sqrt[3]{3}}} \Rightarrow y = \frac{9}{{\sqrt[3]{3}}} = 3\sqrt[3]{9}.\end{array}\)
Vậy giá trị nhot nhất của \(y = 3{\rm{x}} + \frac{4}{{{x^2}}}\) là \(3\sqrt[3]{9}\).
Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:
Hàm số y = 3f(x + 2) – x3 + 3x đồng biến trên khoảng nào dưới đây?
Hình bình hành ABCD có AC ⊥ AD và AD = 3,5; \(\widehat D = 50^\circ \). Tính diện tích ABCD.
Cho a là số thực dương, a ≠ 1 và \(P = {\log _{\sqrt[3]{a}}}{a^3}\). Mệnh đề nào dưới đây đúng?
Cho hàm số f(x) có bảng biến thiên như sau
Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x2 – 4x) = m có ít nhất ba nghiệm thực phân biệt thuộc khoảng (0; +∞)?
Cho x, y là các số thực dương và m, n là hai số thực tùy ý. Đẳng thức nào sau đây là sai?
Tìm tất cả các giá trị của tham số m để hàm số y = x3 + x2 + mx + 1 đồng biến trên khoảng (–∞; +∞)
Với a, b, c là các số dương, chứng minh rằng
\(\left( {a + b + c} \right)\left( {\frac{1}{a} + \frac{1}{b} + \frac{1}{c}} \right) \ge 9\).
Chứng minh \(\frac{1}{{1 + {a^3}}} + \frac{1}{{1 + {b^3}}} + \frac{1}{{1 + {c^3}}} \ge \frac{3}{{1 + abc}}\) với a, b, c ≥ 1.