Cho a, b, c là 3 cạnh trong tam giác. Chứng minh rằng:
\(\frac{a}{{b + c - a}} + \frac{b}{{a + c - b}} + \frac{c}{{a + b - c}} \ge 3\).
Đặt x = b + c – a
y = a + c – b
z = a + b – c
Suy ra \(\left\{ \begin{array}{l}x + z = b + c - a + a + b - c = 2b\\x + y = b + c - a + a + c - b = 2c\\y + z = a + c - b + a + b - c = 2{\rm{a}}\end{array} \right.\)
Ta có: \(2A = \frac{{y + z}}{x} + \frac{{x + z}}{y} + \frac{{x + y}}{z}\)
\( = \frac{y}{x} + \frac{z}{x} + \frac{x}{y} + \frac{z}{y} + \frac{x}{z} + \frac{y}{z}\)
\( = \left( {\frac{y}{x} + \frac{x}{y}} \right) + \left( {\frac{z}{y} + \frac{y}{z}} \right) + \left( {\frac{x}{z} + \frac{z}{x}} \right)\)
Áp dụng bất đẳng thức Cô – si ta có:
\(\begin{array}{l}\left( {\frac{y}{x} + \frac{x}{y}} \right) \ge 2\sqrt {\frac{y}{x}.\frac{x}{y}} = 2\\\left( {\frac{z}{y} + \frac{y}{z}} \right) \ge 2\sqrt {\frac{z}{y}.\frac{y}{z}} = 2\\\left( {\frac{x}{z} + \frac{z}{x}} \right) \ge 2\sqrt {\frac{z}{x}.\frac{x}{z}} = 2\end{array}\)
Suy ra:
\(\left( {\frac{y}{x} + \frac{x}{y}} \right) + \left( {\frac{z}{y} + \frac{y}{z}} \right) + \left( {\frac{x}{z} + \frac{z}{x}} \right) \ge 6\)
\( \Leftrightarrow 2A = \frac{{y + z}}{x} + \frac{{x + z}}{y} + \frac{{x + y}}{z} \ge 6\)
\( \Leftrightarrow 2A = \frac{{2{\rm{a}}}}{{b + c - a}} + \frac{{2b}}{{a + c - b}} + \frac{{2c}}{{a + b - c}} \ge 6\)
\( \Leftrightarrow A = \frac{{\rm{a}}}{{b + c - a}} + \frac{b}{{a + c - b}} + \frac{c}{{a + b - c}} \ge 3\)
Vậy \(\frac{a}{{b + c - a}} + \frac{b}{{a + c - b}} + \frac{c}{{a + b - c}} \ge 3\).
Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:
Hàm số y = 3f(x + 2) – x3 + 3x đồng biến trên khoảng nào dưới đây?
Hình bình hành ABCD có AC ⊥ AD và AD = 3,5; \(\widehat D = 50^\circ \). Tính diện tích ABCD.
Cho a là số thực dương, a ≠ 1 và \(P = {\log _{\sqrt[3]{a}}}{a^3}\). Mệnh đề nào dưới đây đúng?
Cho hàm số f(x) có bảng biến thiên như sau
Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x2 – 4x) = m có ít nhất ba nghiệm thực phân biệt thuộc khoảng (0; +∞)?
Cho x, y là các số thực dương và m, n là hai số thực tùy ý. Đẳng thức nào sau đây là sai?
Với a, b, c là các số dương, chứng minh rằng
\(\left( {a + b + c} \right)\left( {\frac{1}{a} + \frac{1}{b} + \frac{1}{c}} \right) \ge 9\).
Tìm tất cả các giá trị của tham số m để hàm số y = x3 + x2 + mx + 1 đồng biến trên khoảng (–∞; +∞)
Chứng minh \(\frac{1}{{1 + {a^3}}} + \frac{1}{{1 + {b^3}}} + \frac{1}{{1 + {c^3}}} \ge \frac{3}{{1 + abc}}\) với a, b, c ≥ 1.