Tìm x biết (8x – 7)(8x – 5)(2x – 1)(4x – 1) = 9.
Ta có:
(8x – 7)(8x – 5)(2x – 1)(4x – 1) = 9
⇔ (8x – 7)(8x – 5)(8x – 4)(8x – 2) = 72
Đặt 8x – 5 = a
Khi đó ta có:
(a – 2)a(a + 1)(a + 3) = 72
⇔ (a2 – 2a)(a2 + 4a + 3) – 72 = 0
⇔ a4 – 4a3 + 3a2 – 2a3 – 8a2 – 6a – 72 = 0
⇔ a4 + 4a3 – 2a3 – 8a2 + 3a2 + 12a – 18a – 72 = 0
⇔ a3(a + 4) – 2a2(a + 4) + 3a(a + 4) – 18(a + 4) = 0
⇔ (a + 4)(a3 – 2a2 + 3a – 18) = 0
⇔ (a + 4)(a3 – 3a2 + a2 – 3a + 6a – 18) = 0
⇔ (a + 4)[a2(a – 3) + a(a – 3) + 6(a – 3)] = 0
⇔ (a + 4)(a – 3)(a2 + a + 6) = 0 (*)
Vì \[{{\rm{a}}^2} + a + 6 = {a^2} + 2.a.\frac{1}{2} + \frac{1}{4} + \frac{{23}}{4} = {\left( {a + \frac{1}{2}} \right)^2} + \frac{{23}}{4} > 0\]
Nên \(\left( * \right) \Leftrightarrow \left[ \begin{array}{l}a + 4 = 0\\a - 3 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}a = - 4\\a = 3\end{array} \right.\)
Suy ra \(\left[ \begin{array}{l}8{\rm{x}} - 5 = - 4\\8{\rm{x}} - 5 = 3\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}8{\rm{x}} = 1\\8{\rm{x}} = 8\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{1}{8}\\x = 1\end{array} \right.\)
Vậy x = 1 hoặc \[{\rm{x}} = \frac{1}{8}\].
Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:
Hàm số y = 3f(x + 2) – x3 + 3x đồng biến trên khoảng nào dưới đây?
Hình bình hành ABCD có AC ⊥ AD và AD = 3,5; \(\widehat D = 50^\circ \). Tính diện tích ABCD.
Cho a là số thực dương, a ≠ 1 và \(P = {\log _{\sqrt[3]{a}}}{a^3}\). Mệnh đề nào dưới đây đúng?
Cho hàm số f(x) có bảng biến thiên như sau
Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x2 – 4x) = m có ít nhất ba nghiệm thực phân biệt thuộc khoảng (0; +∞)?
Cho x, y là các số thực dương và m, n là hai số thực tùy ý. Đẳng thức nào sau đây là sai?
Tìm tất cả các giá trị của tham số m để hàm số y = x3 + x2 + mx + 1 đồng biến trên khoảng (–∞; +∞)
Với a, b, c là các số dương, chứng minh rằng
\(\left( {a + b + c} \right)\left( {\frac{1}{a} + \frac{1}{b} + \frac{1}{c}} \right) \ge 9\).
Chứng minh bất đẳng thức sinx < x với mọi x > 0 và sinx > x với mọi x < 0.