IMG-LOGO

Câu hỏi:

18/07/2024 40

Chứng minh với ab ≥ 1 thì \(\frac{1}{{1 + {a^2}}} + \frac{1}{{1 + {b^2}}} \ge \frac{2}{{1 + ab}}\).

Trả lời:

verified Giải bởi Vietjack

Ta có: \(\frac{1}{{1 + {a^2}}} + \frac{1}{{1 + {b^2}}} \ge \frac{2}{{1 + ab}}\)

\( \Leftrightarrow \frac{1}{{1 + {a^2}}} + \frac{1}{{1 + {b^2}}} - \frac{2}{{1 + ab}} \ge 0\)

\( \Leftrightarrow \left( {\frac{1}{{1 + {a^2}}} - \frac{1}{{1 + ab}}} \right) + \left( {\frac{1}{{1 + {b^2}}} - \frac{1}{{1 + ab}}} \right) \ge 0\)

\( \Leftrightarrow \frac{{1 + ab - 1 - {a^2}}}{{\left( {1 + {a^2}} \right)\left( {1 + ab} \right)}} + \frac{{1 + ab - 1 - {b^2}}}{{\left( {1 + {b^2}} \right)\left( {1 + ab} \right)}} \ge 0\)

\( \Leftrightarrow \frac{{ab - {a^2}}}{{\left( {1 + {a^2}} \right)\left( {1 + ab} \right)}} + \frac{{ab - {b^2}}}{{\left( {1 + {b^2}} \right)\left( {1 + ab} \right)}} \ge 0\)

\( \Leftrightarrow \frac{{\left( {ab - {a^2}} \right)\left( {1 + {b^2}} \right) + \left( {1 + {a^2}} \right)\left( {ab - {b^2}} \right)}}{{\left( {1 + {a^2}} \right)\left( {1 + ab} \right)\left( {1 + {b^2}} \right)}} \ge 0\)

\( \Leftrightarrow \frac{{a\left( {b - a} \right)\left( {1 + {b^2}} \right) + \left( {1 + {a^2}} \right)b\left( {a - b} \right)}}{{\left( {1 + {a^2}} \right)\left( {1 + ab} \right)\left( {1 + {b^2}} \right)}} \ge 0\)

\( \Leftrightarrow \frac{{\left( {b - a} \right)\left[ {a\left( {1 + {b^2}} \right) - b\left( {1 + {a^2}} \right)} \right]}}{{\left( {1 + {a^2}} \right)\left( {1 + ab} \right)\left( {1 + {b^2}} \right)}} \ge 0\)

\( \Leftrightarrow \frac{{\left( {b - a} \right)\left[ {a + a{b^2} - b - {a^2}b} \right]}}{{\left( {1 + {a^2}} \right)\left( {1 + ab} \right)\left( {1 + {b^2}} \right)}} \ge 0\)

\( \Leftrightarrow \frac{{\left( {b - a} \right)\left[ {\left( {a - b} \right) - ab\left( {a - b} \right)} \right]}}{{\left( {1 + {a^2}} \right)\left( {1 + ab} \right)\left( {1 + {b^2}} \right)}} \ge 0\)

\( \Leftrightarrow \frac{{{{\left( {b - a} \right)}^2}\left( {ab - 1} \right)}}{{\left( {1 + {a^2}} \right)\left( {1 + ab} \right)\left( {1 + {b^2}} \right)}} \ge 0\)

Vì ab ≥ 1 nên ab – 1 ≥ 0

Mà (b – a)2 ≥ 0

Suy ra (b – a)2(ab – 1) ≥ 0

Vì (a2 + 1) > 0, (b2 + 1) > 0, (ab + 1) > 0

Nên (a2 + 1)(b2 + 1)(ab + 1) > 0

Suy ra \(\frac{{{{\left( {b - a} \right)}^2}\left( {ab - 1} \right)}}{{\left( {1 + {a^2}} \right)\left( {1 + ab} \right)\left( {1 + {b^2}} \right)}} \ge 0\) với mọi a, b, ab ≥ 1

Vậy \(\frac{1}{{1 + {a^2}}} + \frac{1}{{1 + {b^2}}} \ge \frac{2}{{1 + ab}}\).

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:

Hàm số y = 3f(x + 2) - x^3 + 3x đồng biến trên khoảng nào dưới đây (ảnh 1)

Hàm số y = 3f(x + 2) – x3 + 3x đồng biến trên khoảng nào dưới đây?

Xem đáp án » 17/08/2023 162

Câu 2:

Tìm các số nguyên x, y thỏa mãn x3 + 2x2 + 3x + 2 = y3.

Xem đáp án » 17/08/2023 122

Câu 3:

Phân tích đa thức sau thành nhân tử: x2 + 6x + 9.

Xem đáp án » 17/08/2023 116

Câu 4:

Hình bình hành ABCD có AC AD và AD = 3,5; \(\widehat D = 50^\circ \). Tính diện tích ABCD.

Xem đáp án » 17/08/2023 114

Câu 5:

Cho a là số thực dương, a ≠ 1 và \(P = {\log _{\sqrt[3]{a}}}{a^3}\). Mệnh đề nào dưới đây đúng?

Xem đáp án » 17/08/2023 114

Câu 6:

Tổng các nghiệm của phương trình 3x+1 + 31-x = 10.

Xem đáp án » 17/08/2023 107

Câu 7:

Cho hàm số f(x) có bảng biến thiên như sau

Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x^2 - 4x) = m có ít nhất  (ảnh 1)

Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x2 – 4x) = m có ít nhất ba nghiệm thực phân biệt thuộc khoảng (0; +∞)?

Xem đáp án » 17/08/2023 100

Câu 9:

Cho x, y là các số thực dương và m, n là hai số thực tùy ý. Đẳng thức nào sau đây là sai?

Xem đáp án » 17/08/2023 88

Câu 10:

Giải hệ phương trình \(\left\{ \begin{array}{l}y + x{y^2} = 6{{\rm{x}}^2}\\1 + {x^2}{y^2} = 5{{\rm{x}}^2}\end{array} \right.\).

Xem đáp án » 17/08/2023 87

Câu 11:

Cho tam giác ABC có cạnh a, b, c thỏa mãn bc = a2.

Chứng minh rằng sinB.sinC = sin2A và hb . hc = ha2.

Xem đáp án » 17/08/2023 79

Câu 12:

Tìm giá trị nhỏ nhất của x2 + 3x + 4.

Xem đáp án » 17/08/2023 78

Câu 13:

Với a, b, c là các số dương, chứng minh rằng

\(\left( {a + b + c} \right)\left( {\frac{1}{a} + \frac{1}{b} + \frac{1}{c}} \right) \ge 9\).

Xem đáp án » 17/08/2023 77

Câu 14:

Tìm tất cả các giá trị của tham số m để hàm số y = x3 + x2 + mx + 1 đồng biến trên khoảng (–∞; +∞)

Xem đáp án » 17/08/2023 75

Câu 15:

Chứng minh \(\frac{1}{{1 + {a^3}}} + \frac{1}{{1 + {b^3}}} + \frac{1}{{1 + {c^3}}} \ge \frac{3}{{1 + abc}}\) với a, b, c ≥ 1.

Xem đáp án » 17/08/2023 72

Câu hỏi mới nhất

Xem thêm »
Xem thêm »