Cho A = 5n+2 + 26 . 5n + 82n + 1. Chứng minh A ⋮ 59.
Ta có:
A = 5n+2 + 26 . 5n + 82n + 1
A = 5n . 52 + 26 . 5n + 82n . 8
A = 5n . 25 + 26 . 5n + 82n . 8
A = 5n (25 + 26) + 82n . 8
A = 51 . 5n + 64n . 8
Vì 64 : 59 dư 5 nên 64n : 59 dư 5n
Suy ra 51 . 5n + 64n . 8 chia 59 dư
51 . 5n + 5n . 8 = 5n(51 + 8) = 59 . 5n
Mà 59 . 5n ⋮ 59
Suy ra A ⋮ 59
Vậy A ⋮ 59.
Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:
Hàm số y = 3f(x + 2) – x3 + 3x đồng biến trên khoảng nào dưới đây?
Hình bình hành ABCD có AC ⊥ AD và AD = 3,5; \(\widehat D = 50^\circ \). Tính diện tích ABCD.
Cho a là số thực dương, a ≠ 1 và \(P = {\log _{\sqrt[3]{a}}}{a^3}\). Mệnh đề nào dưới đây đúng?
Cho hàm số f(x) có bảng biến thiên như sau
Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x2 – 4x) = m có ít nhất ba nghiệm thực phân biệt thuộc khoảng (0; +∞)?
Cho x, y là các số thực dương và m, n là hai số thực tùy ý. Đẳng thức nào sau đây là sai?
Tìm tất cả các giá trị của tham số m để hàm số y = x3 + x2 + mx + 1 đồng biến trên khoảng (–∞; +∞)
Với a, b, c là các số dương, chứng minh rằng
\(\left( {a + b + c} \right)\left( {\frac{1}{a} + \frac{1}{b} + \frac{1}{c}} \right) \ge 9\).
Chứng minh bất đẳng thức sinx < x với mọi x > 0 và sinx > x với mọi x < 0.