Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

17/07/2024 88

Cho hình chóp S.ABCD, đáy ABCD là hình bình hành, mặt phẳng (α) đi qua AB cắt cạnh SC, SD lần lượt tại M, N. Tính tỉ số \(\frac{{SN}}{{S{\rm{D}}}}\) để (α) chia khối chóp S.ABCD thành hai phần có thể tích bằng nhau.


A. \(\frac{1}{2}\)



B. \(\frac{1}{3}\)



C. \(\frac{{\sqrt 5 - 1}}{2}\)


Đáp án chính xác


D. \(\frac{{\sqrt 3 - 1}}{2}\).


Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Cho hình chóp S.ABCD, đáy ABCD là hình bình hành, mặt phẳng (alpha) đi qua (ảnh 1)

Ta có (α) ∩ (SCD) = NM nên NM // CD

Do đó (α) là (ABMN)

Mặt phẳng (α) chia khối chóp thành 2 phần có thể tích bằng nhau là

\({V_{S.ABMN}} = {V_{ABCDNM}} \Rightarrow {V_{S.ABMN}} = \frac{1}{2}.{V_{S.ABCD}}\)                       (1)

Ta có: \({V_{S.ABC}} = {V_{S \cdot ACD}} = \frac{1}{2} \cdot {V_{S \cdot ABCD}}\)

Đặt \(\frac{{SN}}{{SD}} = x\) với \((0 < x < 1)\), khi đó theo Ta – let ta có \(\frac{{SN}}{{SD}} = \frac{{SM}}{{SC}} = x\)

Mặt khác \(\frac{{{V_{S.ABM}}}}{{{V_{S.ABC}}}} = \frac{{SA}}{{SA}}.\frac{{SB}}{{SB}}.\frac{{SM}}{{SC}} = x\)

Suy ra \({V_{S.ABM}} = \frac{x}{2}{V_{S.ABC{\rm{D}}}}\)

Ta có: \(\frac{{{V_{S.AMN}}}}{{{V_{S.ABD}}}} = \frac{{SA}}{{SA}}.\frac{{SN}}{{SD}}.\frac{{SM}}{{SC}} = {x^2}\)

Suy ra \({V_{S.AMN}} = \frac{{{x^2}}}{2}{V_{S.ABC{\rm{D}}}}\)

Ta có: \({V_{S.ABMN}} = {V_{S.AMB}} + {V_{S.AMN}} = \left( {\frac{x}{2} + \frac{{{x^2}}}{2}} \right){V_{S.ABC{\rm{D}}}}\)                  (2)

Từ (1) và (2) suy ra

\(\begin{array}{l}\frac{x}{2} + \frac{{{x^2}}}{2} = \frac{1}{2}\\ \Leftrightarrow {x^2} + x - 1 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{{ - 1 - \sqrt 5 }}{2}\\x = \frac{{ - 1 + \sqrt 5 }}{2}\end{array} \right.\end{array}\)

\((0 < x < 1)\) nên \(x = \frac{{\sqrt 5 - 1}}{2}\)

Hay \(\frac{{SN}}{{S{\rm{D}}}} = \frac{{\sqrt 5 - 1}}{2}\)

Vậy ta chọn đáp án C.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Từ một hộp chứa sáu quả cầu trắng và bốn quả cầu đen, lấy ngẫu nhiên đồng thời bốn quả, tính xác suất sao cho:

a) Bốn quả lấy ra cùng màu;

b) Có ít nhất một quả màu trắng.

Xem đáp án » 02/10/2023 176

Câu 2:

Trong mặt phẳng (Oxy) cho A(1; 2), B(4; 1), C(5; 4). Tính \(\widehat {BAC}\).

Xem đáp án » 02/10/2023 166

Câu 3:

Cho tam giác ABC và đặt \(\overrightarrow a = \overrightarrow {BC} ,\overrightarrow b = \overrightarrow {AC} \). Cặp vectơ nào sau đây cùng phương:

Xem đáp án » 02/10/2023 164

Câu 4:

Cho hình lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông cân tại A, AB = AC = a và \[{\rm{AA}}' = a\sqrt 2 \]. Thể tích khối cầu ngoại tiếp hình tứ diện AB’A’C là:

Xem đáp án » 02/10/2023 163

Câu 5:

Cho α và β là hai góc nhọn bất kỳ thỏa mãn α + β = 90°. Khẳng định nào sau đây là đúng?

Xem đáp án » 02/10/2023 161

Câu 6:

Cho phương trình \(\log _2^2x - 2{\log _2}x - \sqrt {m + {{\log }_2}x} = m\) (*). Có bao nhiêu giá trị nguyên của tham số m [–2019; 2019] để phương trình (*) có nghiệm?

Xem đáp án » 02/10/2023 158

Câu 7:

Các yếu tố nào sau đây xác định một mặt phẳng duy nhất?

Xem đáp án » 02/10/2023 152

Câu 8:

Với những giá trị nào của m thì đồ thị các hàm số y = 2x + (3 + m) và y = 3x + (5 – m) cắt nhau tại một điểm trên trục tung?

Xem đáp án » 02/10/2023 144

Câu 9:

Gieo ba con súc sắc. Xác suất để được nhiều nhất hai mặt 5 là.

Xem đáp án » 02/10/2023 138

Câu 10:

Cho hình bình hành ABCD tâm O. Khi đó \(\overrightarrow {OB} - \overrightarrow {OA} \) bằng:

Xem đáp án » 02/10/2023 137

Câu 11:

Cho tanα = 2. Tính giá trị của biểu thức \(G = \frac{{2\sin \alpha + cos\alpha }}{{cos\alpha - 3\sin \alpha }}\).

Xem đáp án » 02/10/2023 133

Câu 12:

Cho hình bình hành ABCD. M là điểm bất kì, khi đó:

Xem đáp án » 02/10/2023 132

Câu 13:

Bất phương trình \({\log _{\frac{2}{3}}}\left( {2{{\rm{x}}^2} - x - 1} \right) > 0\) có tập nghiệm là (a; b) (c; d). Tính tổng a + b + c + d.

Xem đáp án » 02/10/2023 129

Câu 15:

Cho tam giác ABC có thể xác định được bao nhiêu vectơ (khác vectơ không) có điểm đầu và điểm cuối là đỉnh A, B, C?

Xem đáp án » 02/10/2023 120

Câu hỏi mới nhất

Xem thêm »
Xem thêm »